Spaces:
Runtime error
Runtime error
File size: 49,826 Bytes
4121bec 227b589 4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
from typing import Dict, List, Tuple, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.layers.soft_nms import batched_soft_nms
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import get_event_storage
__all__ = ["fast_rcnn_inference", "FastRCNNOutputLayers", "CLIPFastRCNNOutputLayers"]
logger = logging.getLogger(__name__)
"""
Shape shorthand in this module:
N: number of images in the minibatch
R: number of ROIs, combined over all images, in the minibatch
Ri: number of ROIs in image i
K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.
Naming convention:
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
transform (see :class:`box_regression.Box2BoxTransform`).
pred_class_logits: predicted class scores in [-inf, +inf]; use
softmax(pred_class_logits) to estimate P(class).
gt_classes: ground-truth classification labels in [0, K], where [0, K) represent
foreground object classes and K represents the background class.
pred_proposal_deltas: predicted box2box transform deltas for transforming proposals
to detection box predictions.
gt_proposal_deltas: ground-truth box2box transform deltas
"""
def fast_rcnn_inference(
boxes: List[torch.Tensor],
scores: List[torch.Tensor],
image_shapes: List[Tuple[int, int]],
score_thresh: float,
nms_thresh: float,
soft_nms_enabled,
soft_nms_method,
soft_nms_sigma,
soft_nms_prune,
topk_per_image: int,
scores_bf_multiply,
):
"""
Call `fast_rcnn_inference_single_image` for all images.
Args:
boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic
boxes for each image. Element i has shape (Ri, K * 4) if doing
class-specific regression, or (Ri, 4) if doing class-agnostic
regression, where Ri is the number of predicted objects for image i.
This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`.
scores (list[Tensor]): A list of Tensors of predicted class scores for each image.
Element i has shape (Ri, K + 1), where Ri is the number of predicted objects
for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`.
image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch.
score_thresh (float): Only return detections with a confidence score exceeding this
threshold.
nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1].
soft_nms_enabled (bool): Indicate to use soft non-maximum suppression.
soft_nms_method: (str): One of ['gaussian', 'linear', 'hard']
soft_nms_sigma: (float): Sigma for gaussian soft nms. Value in (0, inf)
soft_nms_prune: (float): Threshold for pruning during soft nms. Value in [0, 1]
topk_per_image (int): The number of top scoring detections to return. Set < 0 to return
all detections.
Returns:
instances: (list[Instances]): A list of N instances, one for each image in the batch,
that stores the topk most confidence detections.
kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates
the corresponding boxes/scores index in [0, Ri) from the input, for image i.
"""
result_per_image = [
fast_rcnn_inference_single_image(
boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh,
soft_nms_enabled, soft_nms_method, soft_nms_sigma, soft_nms_prune, topk_per_image, s_bf_per_img
)
for scores_per_image, boxes_per_image, image_shape, s_bf_per_img in zip(scores, boxes, image_shapes, scores_bf_multiply)
]
return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
def _log_classification_stats(pred_logits, gt_classes, prefix="fast_rcnn"):
"""
Log the classification metrics to EventStorage.
Args:
pred_logits: Rx(K+1) logits. The last column is for background class.
gt_classes: R labels
"""
num_instances = gt_classes.numel()
if num_instances == 0:
return
pred_classes = pred_logits.argmax(dim=1)
bg_class_ind = pred_logits.shape[1] - 1
fg_inds = (gt_classes >= 0) & (gt_classes < bg_class_ind)
num_fg = fg_inds.nonzero().numel()
fg_gt_classes = gt_classes[fg_inds]
fg_pred_classes = pred_classes[fg_inds]
num_false_negative = (fg_pred_classes == bg_class_ind).nonzero().numel()
num_accurate = (pred_classes == gt_classes).nonzero().numel()
fg_num_accurate = (fg_pred_classes == fg_gt_classes).nonzero().numel()
storage = get_event_storage()
storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances)
if num_fg > 0:
storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg)
storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg)
#print("cls_accuracy {:.2f}; fg_cls_accuracy {:.2f}; false_negative {:.2f}".format(num_accurate / num_instances, fg_num_accurate / num_fg, num_false_negative / num_fg))
def fast_rcnn_inference_single_image(
boxes,
scores,
image_shape: Tuple[int, int],
score_thresh: float,
nms_thresh: float,
soft_nms_enabled,
soft_nms_method,
soft_nms_sigma,
soft_nms_prune,
topk_per_image: int,
scores_bf_multiply: None,
):
"""
Single-image inference. Return bounding-box detection results by thresholding
on scores and applying non-maximum suppression (NMS).
Args:
Same as `fast_rcnn_inference`, but with boxes, scores, and image shapes
per image.
Returns:
Same as `fast_rcnn_inference`, but for only one image.
"""
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
if not valid_mask.all():
boxes = boxes[valid_mask]
scores = scores[valid_mask]
scores_bf_multiply = scores_bf_multiply[valid_mask]
# scores = scores[:, :-1]
# scores_bf_multiply = scores_bf_multiply[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = Boxes(boxes.reshape(-1, 4))
boxes.clip(image_shape)
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, 4) # R x C x 4
# 1. Filter results based on detection scores. It can make NMS more efficient
# by filtering out low-confidence detections.
filter_mask = scores > score_thresh # R x K
# R' x 2. First column contains indices of the R predictions;
# Second column contains indices of classes.
filter_inds = filter_mask.nonzero()
if num_bbox_reg_classes == 1:
boxes = boxes[filter_inds[:, 0], 0]
else:
boxes = boxes[filter_mask]
scores = scores[filter_mask]
scores_bf_multiply = scores_bf_multiply[filter_mask]
# 2. Apply NMS for each class independently.
if not soft_nms_enabled:
keep = batched_nms(boxes, scores, filter_inds[:, 1], nms_thresh)
else:
keep, soft_nms_scores = batched_soft_nms(
boxes,
scores,
filter_inds[:, 1],
soft_nms_method,
soft_nms_sigma,
nms_thresh,
soft_nms_prune,
)
scores[keep] = soft_nms_scores
# scores_bf_multiply? (TBD)
scores_bf_multiply = scores
if topk_per_image >= 0:
keep = keep[:topk_per_image]
boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep]
scores_bf_multiply = scores_bf_multiply[keep]
result = Instances(image_shape)
result.pred_boxes = Boxes(boxes)
result.scores = scores
result.scores = scores_bf_multiply # convert to the original scores before multiplying RPN scores
result.pred_classes = filter_inds[:, 1]
return result, filter_inds[:, 0]
class FastRCNNOutputs:
"""
An internal implementation that stores information about outputs of a Fast R-CNN head,
and provides methods that are used to decode the outputs of a Fast R-CNN head.
"""
def __init__(
self,
box2box_transform,
pred_class_logits,
pred_proposal_deltas,
proposals,
smooth_l1_beta=0.0,
box_reg_loss_type="smooth_l1",
):
"""
Args:
box2box_transform (Box2BoxTransform/Box2BoxTransformRotated):
box2box transform instance for proposal-to-detection transformations.
pred_class_logits (Tensor): A tensor of shape (R, K + 1) storing the predicted class
logits for all R predicted object instances.
Each row corresponds to a predicted object instance.
pred_proposal_deltas (Tensor): A tensor of shape (R, K * B) or (R, B) for
class-specific or class-agnostic regression. It stores the predicted deltas that
transform proposals into final box detections.
B is the box dimension (4 or 5).
When B is 4, each row is [dx, dy, dw, dh (, ....)].
When B is 5, each row is [dx, dy, dw, dh, da (, ....)].
proposals (list[Instances]): A list of N Instances, where Instances i stores the
proposals for image i, in the field "proposal_boxes".
When training, each Instances must have ground-truth labels
stored in the field "gt_classes" and "gt_boxes".
The total number of all instances must be equal to R.
smooth_l1_beta (float): The transition point between L1 and L2 loss in
the smooth L1 loss function. When set to 0, the loss becomes L1. When
set to +inf, the loss becomes constant 0.
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
"""
self.box2box_transform = box2box_transform
self.num_preds_per_image = [len(p) for p in proposals]
self.pred_class_logits = pred_class_logits
self.pred_proposal_deltas = pred_proposal_deltas
self.smooth_l1_beta = smooth_l1_beta
self.box_reg_loss_type = box_reg_loss_type
self.image_shapes = [x.image_size for x in proposals]
if len(proposals):
box_type = type(proposals[0].proposal_boxes)
# cat(..., dim=0) concatenates over all images in the batch
self.proposals = box_type.cat([p.proposal_boxes for p in proposals])
assert (
not self.proposals.tensor.requires_grad
), "Proposals should not require gradients!"
# "gt_classes" exists if and only if training. But other gt fields may
# not necessarily exist in training for images that have no groundtruth.
if proposals[0].has("gt_classes"):
self.gt_classes = cat([p.gt_classes for p in proposals], dim=0)
# If "gt_boxes" does not exist, the proposals must be all negative and
# should not be included in regression loss computation.
# Here we just use proposal_boxes as an arbitrary placeholder because its
# value won't be used in self.box_reg_loss().
gt_boxes = [
p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes for p in proposals
]
self.gt_boxes = box_type.cat(gt_boxes)
else:
self.proposals = Boxes(torch.zeros(0, 4, device=self.pred_proposal_deltas.device))
self._no_instances = len(self.proposals) == 0 # no instances found
def softmax_cross_entropy_loss(self):
"""
Deprecated
"""
_log_classification_stats(self.pred_class_logits, self.gt_classes)
return cross_entropy(self.pred_class_logits, self.gt_classes, reduction="mean")
def box_reg_loss(self):
"""
Deprecated
"""
if self._no_instances:
return 0.0 * self.pred_proposal_deltas.sum()
box_dim = self.proposals.tensor.size(1) # 4 or 5
cls_agnostic_bbox_reg = self.pred_proposal_deltas.size(1) == box_dim
device = self.pred_proposal_deltas.device
bg_class_ind = self.pred_class_logits.shape[1] - 1
# Box delta loss is only computed between the prediction for the gt class k
# (if 0 <= k < bg_class_ind) and the target; there is no loss defined on predictions
# for non-gt classes and background.
# Empty fg_inds should produce a valid loss of zero because reduction=sum.
fg_inds = nonzero_tuple((self.gt_classes >= 0) & (self.gt_classes < bg_class_ind))[0]
if cls_agnostic_bbox_reg:
# pred_proposal_deltas only corresponds to foreground class for agnostic
gt_class_cols = torch.arange(box_dim, device=device)
else:
# pred_proposal_deltas for class k are located in columns [b * k : b * k + b],
# where b is the dimension of box representation (4 or 5)
# Note that compared to Detectron1,
# we do not perform bounding box regression for background classes.
gt_class_cols = box_dim * self.gt_classes[fg_inds, None] + torch.arange(
box_dim, device=device
)
if self.box_reg_loss_type == "smooth_l1":
gt_proposal_deltas = self.box2box_transform.get_deltas(
self.proposals.tensor, self.gt_boxes.tensor
)
loss_box_reg = smooth_l1_loss(
self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
gt_proposal_deltas[fg_inds],
self.smooth_l1_beta,
reduction="sum",
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
self.proposals.tensor[fg_inds],
)
loss_box_reg = giou_loss(
fg_pred_boxes,
self.gt_boxes.tensor[fg_inds],
reduction="sum",
)
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
loss_box_reg = loss_box_reg / self.gt_classes.numel()
return loss_box_reg
def losses(self):
"""
Deprecated
"""
return {"loss_cls": self.softmax_cross_entropy_loss(), "loss_box_reg": self.box_reg_loss()}
def predict_boxes(self):
"""
Deprecated
"""
pred = self.box2box_transform.apply_deltas(self.pred_proposal_deltas, self.proposals.tensor)
return pred.split(self.num_preds_per_image, dim=0)
def predict_probs(self):
"""
Deprecated
"""
probs = F.softmax(self.pred_class_logits, dim=-1)
return probs.split(self.num_preds_per_image, dim=0)
class FastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
1. proposal-to-detection box regression deltas
2. classification scores
"""
@configurable
def __init__(
self,
input_shape: ShapeSpec,
*,
box2box_transform,
num_classes: int,
test_score_thresh: float = 0.0,
test_nms_thresh: float = 0.5,
soft_nms_enabled=False,
soft_nms_method="gaussian",
soft_nms_sigma=0.5,
soft_nms_prune=0.001,
test_topk_per_image: int = 100,
cls_agnostic_bbox_reg: bool = False,
smooth_l1_beta: float = 0.0,
box_reg_loss_type: str = "smooth_l1",
loss_weight: Union[float, Dict[str, float]] = 1.0,
clip_cls_emb: tuple = (False, None),
no_box_delta: bool = False,
bg_cls_loss_weight: None,
multiply_rpn_score: False,
openset_test: None,
):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature to this module
box2box_transform (Box2BoxTransform or Box2BoxTransformRotated):
num_classes (int): number of foreground classes
test_score_thresh (float): threshold to filter predictions results.
test_nms_thresh (float): NMS threshold for prediction results.
test_topk_per_image (int): number of top predictions to produce per image.
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if
`box_reg_loss_type` is "smooth_l1"
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
loss_weight (float|dict): weights to use for losses. Can be single float for weighting
all losses, or a dict of individual weightings. Valid dict keys are:
* "loss_cls": applied to classification loss
* "loss_box_reg": applied to box regression loss
"""
super().__init__()
if isinstance(input_shape, int): # some backward compatibility
input_shape = ShapeSpec(channels=input_shape)
self.num_classes = num_classes
input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1)
if clip_cls_emb[0]: # if combine {C4, text emb as classifier}, then has to use att_pool to match dimension
input_size = clip_cls_emb[3] if clip_cls_emb[2] in ['CLIPRes5ROIHeads', 'CLIPStandardROIHeads'] else input_size
# prediction layer for num_classes foreground classes and one background class (hence + 1)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
box_dim = len(box2box_transform.weights)
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for l in [self.cls_score, self.bbox_pred]:
nn.init.constant_(l.bias, 0)
self.box2box_transform = box2box_transform
self.smooth_l1_beta = smooth_l1_beta
self.test_score_thresh = test_score_thresh
self.test_nms_thresh = test_nms_thresh
self.soft_nms_enabled = soft_nms_enabled
self.soft_nms_method = soft_nms_method
self.soft_nms_sigma = soft_nms_sigma
self.soft_nms_prune = soft_nms_prune
self.test_topk_per_image = test_topk_per_image
self.box_reg_loss_type = box_reg_loss_type
if isinstance(loss_weight, float):
loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight}
self.loss_weight = loss_weight
# use clip text embeddings as classifier's weights
self.use_clip_cls_emb = clip_cls_emb[0]
if self.use_clip_cls_emb:
######### V2L projection layer in CVPR OVR model #########
if openset_test[3]: # run CVPR model
self.emb_pred = nn.Linear(input_size, 768)
self.emb_pred.weight.requires_grad = False
self.emb_pred.bias.requires_grad = False
input_size = 768
else:
self.emb_pred = None
######### V2L projection layer in CVPR OVR model #########
text_emb_require_grad = False
self.use_bias = False
self.tempurature = openset_test[2] # 0.01 # the smaller, the bigger difference among probs after softmax
self.no_box_delta = no_box_delta
if bg_cls_loss_weight is not None: # loss weigh for bg regions
self.cls_loss_weight = torch.ones(num_classes + 1)
self.cls_loss_weight[-1] = bg_cls_loss_weight
else:
self.cls_loss_weight = None
self.multiply_rpn_score = multiply_rpn_score
self.focal_scaled_loss = openset_test[4]
@classmethod
def from_config(cls, cfg, input_shape):
# if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN":
# assert cfg.MODEL.CLIP.NO_BOX_DELTA is False
return {
"input_shape": input_shape,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS),
# fmt: off
"num_classes" : cfg.MODEL.ROI_HEADS.NUM_CLASSES,
"cls_agnostic_bbox_reg" : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG,
"smooth_l1_beta" : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA,
"test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
"test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
"soft_nms_enabled" : cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED,
"soft_nms_method" : cfg.MODEL.ROI_HEADS.SOFT_NMS_METHOD,
"soft_nms_sigma" : cfg.MODEL.ROI_HEADS.SOFT_NMS_SIGMA,
"soft_nms_prune" : cfg.MODEL.ROI_HEADS.SOFT_NMS_PRUNE,
"test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE,
"box_reg_loss_type" : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE,
"loss_weight" : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT},
"clip_cls_emb" : (cfg.MODEL.CLIP.USE_TEXT_EMB_CLASSIFIER, cfg.MODEL.CLIP.TEXT_EMB_PATH, cfg.MODEL.ROI_HEADS.NAME, cfg.MODEL.CLIP.TEXT_EMB_DIM),
"no_box_delta" : cfg.MODEL.CLIP.NO_BOX_DELTA or cfg.MODEL.CLIP.CROP_REGION_TYPE == 'GT',
"bg_cls_loss_weight" : cfg.MODEL.CLIP.BG_CLS_LOSS_WEIGHT,
"multiply_rpn_score" : cfg.MODEL.CLIP.MULTIPLY_RPN_SCORE,
"openset_test" : (cfg.MODEL.CLIP.OPENSET_TEST_NUM_CLASSES, cfg.MODEL.CLIP.OPENSET_TEST_TEXT_EMB_PATH, \
cfg.MODEL.CLIP.CLSS_TEMP, cfg.MODEL.CLIP.RUN_CVPR_OVR, cfg.MODEL.CLIP.FOCAL_SCALED_LOSS)
# fmt: on
}
def forward(self, x, queries):
"""
Args:
x: per-region features of shape (N, ...) for N bounding boxes to predict.
Returns:
(Tensor, Tensor):
First tensor: shape (N,K+1), scores for each of the N box. Each row contains the
scores for K object categories and 1 background class.
Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4),
or (N,4) for class-agnostic regression.
"""
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
if self.use_clip_cls_emb: # use clip text embeddings as classifier's weights
normalized_x = F.normalize(x, p=2.0, dim=1)
cls_scores = normalized_x @ queries.t()
bg_cls_scores = cls_scores.new(cls_scores.shape[0], 1).fill_(0.3)
scores = cls_scores # torch.cat((cls_scores, bg_cls_scores), 1)
else: # default setting
scores = self.cls_score(x)
proposal_deltas = scores.new(scores.shape[0], 4).fill_(0) # self.bbox_pred(x)
return scores, proposal_deltas
def losses(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``,
``gt_classes`` are expected.
Returns:
Dict[str, Tensor]: dict of losses
"""
scores, proposal_deltas = predictions
# parse classification outputs
gt_classes = (
cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
)
_log_classification_stats(scores, gt_classes)
# parse box regression outputs
if len(proposals):
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4
assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
# If "gt_boxes" does not exist, the proposals must be all negative and
# should not be included in regression loss computation.
# Here we just use proposal_boxes as an arbitrary placeholder because its
# value won't be used in self.box_reg_loss().
gt_boxes = cat(
[(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
dim=0,
)
else:
proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)
# loss weights
if self.cls_loss_weight is not None and self.cls_loss_weight.device != scores.device:
self.cls_loss_weight = self.cls_loss_weight.to(scores.device)
if self.focal_scaled_loss is not None:
loss_cls = self.focal_loss(scores, gt_classes, gamma=self.focal_scaled_loss)
else:
loss_cls = cross_entropy(scores, gt_classes, reduction="mean") if self.cls_loss_weight is None else \
cross_entropy(scores, gt_classes, reduction="mean", weight=self.cls_loss_weight)
losses = {
"loss_cls": loss_cls,
"loss_box_reg": self.box_reg_loss(
proposal_boxes, gt_boxes, proposal_deltas, gt_classes
),
}
return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
def focal_loss(self, inputs, targets, alpha=0.25, gamma=0.5, reduction="mean", mode='softmax'):
"""Inspired by RetinaNet implementation"""
if mode == 'sigmoid': # original focal loss implementation, except we include bg loss
targets = F.one_hot(targets, num_classes=self.num_classes + 1).to(inputs.dtype) # create binary label for each logit entry, including bg loss
p = torch.sigmoid(inputs)
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = p * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
elif mode == 'softmax':
only_fg = False # if True, only fg rois are attached the focal loss scaling
#gamma = 0.3 # 0.5 # 0.8 # 1.5 # 1.0
alpha = -1 # no binary target in this case; instead, we can use bg loss weight
if targets.numel() == 0 and reduction == "mean":
return input.sum() * 0.0 # connect the gradient
ce_loss = F.cross_entropy(inputs, targets, reduction="none")
p = F.softmax(inputs, dim=-1)
p_t = p[torch.arange(p.size(0)).to(p.device), targets] # get prob of target class
if only_fg: # apply scaling to only fg rois
roi_wise_gamma = torch.zeros(p.size(0)).to(p.device)
roi_wise_gamma[targets != self.num_classes] = gamma
gamma = roi_wise_gamma
loss = ce_loss * ((1 - p_t) ** gamma)
# if alpha >= 0:
# alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
# loss = alpha_t * loss
# bg loss weight
if self.cls_loss_weight is not None:
loss_weight = torch.ones(loss.size(0)).to(p.device)
loss_weight[targets == self.num_classes] = self.cls_loss_weight[-1].item()
loss = loss * loss_weight
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss
def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes):
"""
Args:
All boxes are tensors with the same shape Rx(4 or 5).
gt_classes is a long tensor of shape R, the gt class label of each proposal.
R shall be the number of proposals.
"""
box_dim = proposal_boxes.shape[1] # 4 or 5
# Regression loss is only computed for foreground proposals (those matched to a GT)
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0]
if pred_deltas.shape[1] == box_dim: # cls-agnostic regression
fg_pred_deltas = pred_deltas[fg_inds]
else:
fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
fg_inds, gt_classes[fg_inds]
]
if self.box_reg_loss_type == "smooth_l1":
gt_pred_deltas = self.box2box_transform.get_deltas(
proposal_boxes[fg_inds],
gt_boxes[fg_inds],
)
loss_box_reg = smooth_l1_loss(
fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
fg_pred_deltas, proposal_boxes[fg_inds]
)
loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
# The reg loss is normalized using the total number of regions (R), not the number
# of foreground regions even though the box regression loss is only defined on
# foreground regions. Why? Because doing so gives equal training influence to
# each foreground example. To see how, consider two different minibatches:
# (1) Contains a single foreground region
# (2) Contains 100 foreground regions
# If we normalize by the number of foreground regions, the single example in
# minibatch (1) will be given 100 times as much influence as each foreground
# example in minibatch (2). Normalizing by the total number of regions, R,
# means that the single example in minibatch (1) and each of the 100 examples
# in minibatch (2) are given equal influence.
return loss_box_reg / max(gt_classes.numel(), 1.0) # return 0 if empty
def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Instances]: same as `fast_rcnn_inference`.
list[Tensor]: same as `fast_rcnn_inference`.
"""
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
image_shapes = [x.image_size for x in proposals]
scores_bf_multiply = scores # as a backup
if self.multiply_rpn_score:
rpn_scores = [p.get('objectness_logits') for p in proposals]
# filter based on rpn_scores
# boxes = (boxes[0][rpn_scores[0] > 0.9],)
# scores = (scores[0][rpn_scores[0] > 0.9],)
# rpn_scores = [rpn_scores[0][rpn_scores[0] > 0.9]]
# scores_bf_multiply = scores # as a backup
#rpn_scores = [p.get('objectness_logits').sigmoid() for p in proposals]
scores = [(torch.sigmoid(s) * torch.sigmoid(rpn_s[:, None])) ** 0.5 for s, rpn_s in zip(scores, rpn_scores)]
return fast_rcnn_inference(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.soft_nms_enabled,
self.soft_nms_method,
self.soft_nms_sigma,
self.soft_nms_prune,
self.test_topk_per_image,
scores_bf_multiply = scores_bf_multiply if self.multiply_rpn_score else None,
)
def predict_boxes_for_gt_classes(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected.
Returns:
list[Tensor]:
A list of Tensors of predicted boxes for GT classes in case of
class-specific box head. Element i of the list has shape (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
scores, proposal_deltas = predictions
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
N, B = proposal_boxes.shape
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas, proposal_boxes
) # Nx(KxB)
K = predict_boxes.shape[1] // B
if K > 1:
gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0)
# Some proposals are ignored or have a background class. Their gt_classes
# cannot be used as index.
gt_classes = gt_classes.clamp_(0, K - 1)
predict_boxes = predict_boxes.view(N, K, B)[
torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes
]
num_prop_per_image = [len(p) for p in proposals]
return predict_boxes.split(num_prop_per_image)
def predict_boxes(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Tensor]:
A list of Tensors of predicted class-specific or class-agnostic boxes
for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
_, proposal_deltas = predictions
num_prop_per_image = [len(p) for p in proposals]
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
if self.no_box_delta:
predict_boxes = proposal_boxes
else:
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas,
proposal_boxes,
) # Nx(KxB)
return predict_boxes.split(num_prop_per_image)
def predict_probs(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions.
Returns:
list[Tensor]:
A list of Tensors of predicted class probabilities for each image.
Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i.
"""
scores, _ = predictions
num_inst_per_image = [len(p) for p in proposals]
# probs = F.softmax(scores, dim=-1)
probs = scores
return probs.split(num_inst_per_image, dim=0)
class OLDFastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
1. proposal-to-detection box regression deltas
2. classification scores
"""
@configurable
def __init__(
self,
input_shape: ShapeSpec,
*,
box2box_transform,
num_classes: int,
test_score_thresh: float = 0.0,
test_nms_thresh: float = 0.5,
test_topk_per_image: int = 100,
cls_agnostic_bbox_reg: bool = False,
smooth_l1_beta: float = 0.0,
box_reg_loss_type: str = "smooth_l1",
loss_weight: Union[float, Dict[str, float]] = 1.0,
no_box_delta: bool = False,
):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature to this module
box2box_transform (Box2BoxTransform or Box2BoxTransformRotated):
num_classes (int): number of foreground classes
test_score_thresh (float): threshold to filter predictions results.
test_nms_thresh (float): NMS threshold for prediction results.
test_topk_per_image (int): number of top predictions to produce per image.
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression
smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if
`box_reg_loss_type` is "smooth_l1"
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
loss_weight (float|dict): weights to use for losses. Can be single float for weighting
all losses, or a dict of individual weightings. Valid dict keys are:
* "loss_cls": applied to classification loss
* "loss_box_reg": applied to box regression loss
"""
super().__init__()
if isinstance(input_shape, int): # some backward compatibility
input_shape = ShapeSpec(channels=input_shape)
self.num_classes = num_classes
input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1)
# prediction layer for num_classes foreground classes and one background class (hence + 1)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
box_dim = len(box2box_transform.weights)
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for l in [self.cls_score, self.bbox_pred]:
nn.init.constant_(l.bias, 0)
self.box2box_transform = box2box_transform
self.smooth_l1_beta = smooth_l1_beta
self.test_score_thresh = test_score_thresh
self.test_nms_thresh = test_nms_thresh
self.test_topk_per_image = test_topk_per_image
self.box_reg_loss_type = box_reg_loss_type
if isinstance(loss_weight, float):
loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight}
self.loss_weight = loss_weight
self.no_box_delta = no_box_delta
@classmethod
def from_config(cls, cfg, input_shape):
return {
"input_shape": input_shape,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS),
# fmt: off
"num_classes" : cfg.MODEL.ROI_HEADS.NUM_CLASSES,
"cls_agnostic_bbox_reg" : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG,
"smooth_l1_beta" : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA,
"test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
"test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
"test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE,
"box_reg_loss_type" : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE,
"loss_weight" : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT},
"no_box_delta" : cfg.MODEL.CLIP.NO_BOX_DELTA or cfg.MODEL.CLIP.CROP_REGION_TYPE == 'GT',
# fmt: on
}
def forward(self, x):
"""
Args:
x: per-region features of shape (N, ...) for N bounding boxes to predict.
Returns:
(Tensor, Tensor):
First tensor: shape (N,K+1), scores for each of the N box. Each row contains the
scores for K object categories and 1 background class.
Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4),
or (N,4) for class-agnostic regression.
"""
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
scores = self.cls_score(x)
proposal_deltas = self.bbox_pred(x)
return scores, proposal_deltas
def losses(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``,
``gt_classes`` are expected.
Returns:
Dict[str, Tensor]: dict of losses
"""
scores, proposal_deltas = predictions
# parse classification outputs
gt_classes = (
cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
)
_log_classification_stats(scores, gt_classes)
# parse box regression outputs
if len(proposals):
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4
assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
# If "gt_boxes" does not exist, the proposals must be all negative and
# should not be included in regression loss computation.
# Here we just use proposal_boxes as an arbitrary placeholder because its
# value won't be used in self.box_reg_loss().
gt_boxes = cat(
[(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
dim=0,
)
else:
proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)
losses = {
"loss_cls": cross_entropy(scores, gt_classes, reduction="mean"),
"loss_box_reg": self.box_reg_loss(
proposal_boxes, gt_boxes, proposal_deltas, gt_classes
),
}
return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes):
"""
Args:
All boxes are tensors with the same shape Rx(4 or 5).
gt_classes is a long tensor of shape R, the gt class label of each proposal.
R shall be the number of proposals.
"""
box_dim = proposal_boxes.shape[1] # 4 or 5
# Regression loss is only computed for foreground proposals (those matched to a GT)
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0]
if pred_deltas.shape[1] == box_dim: # cls-agnostic regression
fg_pred_deltas = pred_deltas[fg_inds]
else:
fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
fg_inds, gt_classes[fg_inds]
]
if self.box_reg_loss_type == "smooth_l1":
gt_pred_deltas = self.box2box_transform.get_deltas(
proposal_boxes[fg_inds],
gt_boxes[fg_inds],
)
loss_box_reg = smooth_l1_loss(
fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
fg_pred_deltas, proposal_boxes[fg_inds]
)
loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
# The reg loss is normalized using the total number of regions (R), not the number
# of foreground regions even though the box regression loss is only defined on
# foreground regions. Why? Because doing so gives equal training influence to
# each foreground example. To see how, consider two different minibatches:
# (1) Contains a single foreground region
# (2) Contains 100 foreground regions
# If we normalize by the number of foreground regions, the single example in
# minibatch (1) will be given 100 times as much influence as each foreground
# example in minibatch (2). Normalizing by the total number of regions, R,
# means that the single example in minibatch (1) and each of the 100 examples
# in minibatch (2) are given equal influence.
return loss_box_reg / max(gt_classes.numel(), 1.0) # return 0 if empty
def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Instances]: same as `fast_rcnn_inference`.
list[Tensor]: same as `fast_rcnn_inference`.
"""
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
image_shapes = [x.image_size for x in proposals]
return fast_rcnn_inference(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.test_topk_per_image,
)
def predict_boxes_for_gt_classes(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were used
to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected.
Returns:
list[Tensor]:
A list of Tensors of predicted boxes for GT classes in case of
class-specific box head. Element i of the list has shape (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
scores, proposal_deltas = predictions
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
N, B = proposal_boxes.shape
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas, proposal_boxes
) # Nx(KxB)
K = predict_boxes.shape[1] // B
if K > 1:
gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0)
# Some proposals are ignored or have a background class. Their gt_classes
# cannot be used as index.
gt_classes = gt_classes.clamp_(0, K - 1)
predict_boxes = predict_boxes.view(N, K, B)[
torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes
]
num_prop_per_image = [len(p) for p in proposals]
return predict_boxes.split(num_prop_per_image)
def predict_boxes(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Tensor]:
A list of Tensors of predicted class-specific or class-agnostic boxes
for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is
the number of proposals for image i and B is the box dimension (4 or 5)
"""
if not len(proposals):
return []
_, proposal_deltas = predictions
num_prop_per_image = [len(p) for p in proposals]
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)
if self.no_box_delta:
predict_boxes = proposal_boxes
else:
predict_boxes = self.box2box_transform.apply_deltas(
proposal_deltas,
proposal_boxes,
) # Nx(KxB)
return predict_boxes.split(num_prop_per_image)
def predict_probs(
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]
):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions.
Returns:
list[Tensor]:
A list of Tensors of predicted class probabilities for each image.
Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i.
"""
scores, _ = predictions
num_inst_per_image = [len(p) for p in proposals]
probs = F.softmax(scores, dim=-1)
return probs.split(num_inst_per_image, dim=0) |