jwyang
first commit
4121bec
raw
history blame
10.3 kB
from collections import OrderedDict
from typing import Tuple, Union
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from timm.models.layers import DropPath, trunc_normal_
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from .det_swin import SwinTransformer
from ..text_encoder import build_text_encoder
from ..text_encoder import build_tokenizer
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
pdtype = x.dtype
x = x.float()
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x.to(pdtype) + self.bias
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None,
drop_path: float = 0.0):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.drop_path(self.attention(self.ln_1(x)))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self,
context_length: int,
vocab_size: int,
width: int,
layers: int,
heads: int,
drop_path: float = 0.0):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, width)
self.context_length = context_length
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, width)
)
self.width = width
self.layers = layers
attn_mask = self.build_attention_mask()
dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] # stochastic depth decay rule
self.resblocks = nn.Sequential(
*[
ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
for i in range(layers)
]
)
self.ln_final = LayerNorm(width)
trunc_normal_(self.positional_embedding, std=.02)
# nn.init.normal_(self.token_embedding, std=.02)
trunc_normal_(self.token_embedding.weight, std=.02)
self.apply(self._init_weights)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {
'positional_embedding',
'token_embedding',
}
def forward(self, text: torch.Tensor):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.resblocks(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
return x
class CLIP(Backbone):
def __init__(self, config: dict):
super().__init__()
spec_text = config['MODEL']['SPEC']['TEXT']
assert spec_text['TOKENIZER'] == 'clip', 'Only support clip tokenizer'
self.tokenizer_style = spec_text['TOKENIZER']
self.tokenizer = build_tokenizer(spec_text)
self.text_encoder = build_text_encoder(spec_text, self.tokenizer, True)
embed_dim = config['MODEL']['SPEC']['EMBED_DIM']
self.text_projection = nn.Parameter(
torch.empty(spec_text['WIDTH'], embed_dim)
)
spec_vision = config['MODEL']['SPEC']['VISION']
self.image_encoder = SwinTransformer(
patch_size=spec_vision['PATCH_SIZE'],
in_chans=spec_vision['IN_CHANS'],
embed_dim=spec_vision['EMBED_DIM'],
depths=spec_vision['DEPTHS'],
num_heads=spec_vision['NUM_HEADS'],
window_size=spec_vision['WINDOW_SIZE'],
mlp_ratio=spec_vision['MLP_RATIO'],
qkv_bias=spec_vision['QKV_BIAS'],
qk_scale=spec_vision.get('QK_SCALE', None),
drop_rate=spec_vision['DROP_RATE'],
attn_drop_rate=spec_vision['ATTN_DROP_RATE'],
drop_path_rate=spec_vision['DROP_PATH_RATE'],
ape=spec_vision['APE'],
patch_norm=spec_vision['PATCH_NORM'],
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False,
)
width = spec_vision['EMBED_DIM'] * 2 ** (len(spec_vision['DEPTHS']) - 1)
self.image_projection = nn.Parameter(
torch.empty(width, embed_dim)
)
# self.logit_scale = nn.Parameter(torch.FloatTensor([np.log(1 / 0.07)]))
self.logit_scale = nn.Parameter(torch.ones([]))
trunc_normal_(self.text_projection, std=.02)
trunc_normal_(self.image_projection, std=.02)
def init_weights(self, pretrained='', pretrained_layers=[], verbose=True):
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained, map_location='cpu')
logger.info(f'=> loading pretrained model {pretrained}')
model_dict = self.state_dict()
pretrained_dict = {
k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()
}
need_init_state_dict = {}
for k, v in pretrained_dict.items():
need_init = (
k.split('.')[0] in pretrained_layers
or pretrained_layers[0] is '*'
)
if need_init:
if verbose:
logging.info(f'=> init {k} from {pretrained}')
need_init_state_dict[k] = v
self.load_state_dict(need_init_state_dict, strict=False)
@torch.jit.ignore
def no_weight_decay(self):
no_weight_decay = {'logit_scale'}
for k in self.text_encoder.no_weight_decay():
no_weight_decay.add('text.'+k)
for k in self.image_encoder.no_weight_decay():
no_weight_decay.add('visual.'+k)
return no_weight_decay
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
@property
def dtype(self):
return self.image_encoder.conv1.weight.dtype
def encode_image(self, image, norm=True):
x = self.image_encoder(image)
return x
def encode_text(self, text, norm=True):
assert isinstance(text, str), "only support single query"
tokens = self.tokenizer(
text, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
)
tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}
x = self.text_encoder(**tokens)
x = x['last_hidden_state']
x = x[torch.arange(x.size(0)), tokens['input_ids'].argmax(dim=-1)]
x = x @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
def forward(self, image):
features_image = self.image_encoder(image)
return features_image
@BACKBONE_REGISTRY.register()
def build_clip_swin_backbone(cfg, input_shape):
"""
Create a CLIP Swin instance from config.
Returns:
SwinTransformer: a :class:`SwinTransformer` instance.
"""
spec_vision = cfg.MODEL.CLIP.VISION
return SwinTransformer(
patch_size=spec_vision['PATCH_SIZE'],
in_chans=spec_vision['IN_CHANS'],
embed_dim=spec_vision['EMBED_DIM'],
depths=spec_vision['DEPTHS'],
num_heads=spec_vision['NUM_HEADS'],
window_size=spec_vision['WINDOW_SIZE'],
mlp_ratio=spec_vision['MLP_RATIO'],
qkv_bias=spec_vision['QKV_BIAS'],
qk_scale=spec_vision.get('QK_SCALE', None),
drop_rate=spec_vision['DROP_RATE'],
attn_drop_rate=spec_vision['ATTN_DROP_RATE'],
drop_path_rate=spec_vision['DROP_PATH_RATE'],
ape=spec_vision['APE'],
patch_norm=spec_vision['PATCH_NORM'],
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False,
)
@BACKBONE_REGISTRY.register()
def build_clip_swin(cfg, input_shape):
"""
Create a CLIP Swin instance from config.
Returns:
SwinTransformer: a :class:`SwinTransformer` instance.
"""
return CLIP(cfg)