jwyang
first commit
4121bec
raw
history blame
11.9 kB
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import List
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d, ConvTranspose2d, ShapeSpec, cat, get_norm
from detectron2.structures import Instances
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry
__all__ = [
"BaseMaskRCNNHead",
"MaskRCNNConvUpsampleHead",
"build_mask_head",
"ROI_MASK_HEAD_REGISTRY",
]
ROI_MASK_HEAD_REGISTRY = Registry("ROI_MASK_HEAD")
ROI_MASK_HEAD_REGISTRY.__doc__ = """
Registry for mask heads, which predicts instance masks given
per-region features.
The registered object will be called with `obj(cfg, input_shape)`.
"""
@torch.jit.unused
def mask_rcnn_loss(pred_mask_logits: torch.Tensor, instances: List[Instances], vis_period: int = 0):
"""
Compute the mask prediction loss defined in the Mask R-CNN paper.
Args:
pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask)
for class-specific or class-agnostic, where B is the total number of predicted masks
in all images, C is the number of foreground classes, and Hmask, Wmask are the height
and width of the mask predictions. The values are logits.
instances (list[Instances]): A list of N Instances, where N is the number of images
in the batch. These instances are in 1:1
correspondence with the pred_mask_logits. The ground-truth labels (class, box, mask,
...) associated with each instance are stored in fields.
vis_period (int): the period (in steps) to dump visualization.
Returns:
mask_loss (Tensor): A scalar tensor containing the loss.
"""
cls_agnostic_mask = pred_mask_logits.size(1) == 1
total_num_masks = pred_mask_logits.size(0)
mask_side_len = pred_mask_logits.size(2)
assert pred_mask_logits.size(2) == pred_mask_logits.size(3), "Mask prediction must be square!"
gt_classes = []
gt_masks = []
for instances_per_image in instances:
if len(instances_per_image) == 0:
continue
if not cls_agnostic_mask:
gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64)
gt_classes.append(gt_classes_per_image)
gt_masks_per_image = instances_per_image.gt_masks.crop_and_resize(
instances_per_image.proposal_boxes.tensor, mask_side_len
).to(device=pred_mask_logits.device)
# A tensor of shape (N, M, M), N=#instances in the image; M=mask_side_len
gt_masks.append(gt_masks_per_image)
if len(gt_masks) == 0:
return pred_mask_logits.sum() * 0
gt_masks = cat(gt_masks, dim=0)
if cls_agnostic_mask:
pred_mask_logits = pred_mask_logits[:, 0]
else:
indices = torch.arange(total_num_masks)
gt_classes = cat(gt_classes, dim=0)
pred_mask_logits = pred_mask_logits[indices, gt_classes]
if gt_masks.dtype == torch.bool:
gt_masks_bool = gt_masks
else:
# Here we allow gt_masks to be float as well (depend on the implementation of rasterize())
gt_masks_bool = gt_masks > 0.5
gt_masks = gt_masks.to(dtype=torch.float32)
# Log the training accuracy (using gt classes and 0.5 threshold)
mask_incorrect = (pred_mask_logits > 0.0) != gt_masks_bool
mask_accuracy = 1 - (mask_incorrect.sum().item() / max(mask_incorrect.numel(), 1.0))
num_positive = gt_masks_bool.sum().item()
false_positive = (mask_incorrect & ~gt_masks_bool).sum().item() / max(
gt_masks_bool.numel() - num_positive, 1.0
)
false_negative = (mask_incorrect & gt_masks_bool).sum().item() / max(num_positive, 1.0)
storage = get_event_storage()
storage.put_scalar("mask_rcnn/accuracy", mask_accuracy)
storage.put_scalar("mask_rcnn/false_positive", false_positive)
storage.put_scalar("mask_rcnn/false_negative", false_negative)
if vis_period > 0 and storage.iter % vis_period == 0:
pred_masks = pred_mask_logits.sigmoid()
vis_masks = torch.cat([pred_masks, gt_masks], axis=2)
name = "Left: mask prediction; Right: mask GT"
for idx, vis_mask in enumerate(vis_masks):
vis_mask = torch.stack([vis_mask] * 3, axis=0)
storage.put_image(name + f" ({idx})", vis_mask)
mask_loss = F.binary_cross_entropy_with_logits(pred_mask_logits, gt_masks, reduction="mean")
return mask_loss
def mask_rcnn_inference(pred_mask_logits: torch.Tensor, pred_instances: List[Instances]):
"""
Convert pred_mask_logits to estimated foreground probability masks while also
extracting only the masks for the predicted classes in pred_instances. For each
predicted box, the mask of the same class is attached to the instance by adding a
new "pred_masks" field to pred_instances.
Args:
pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask)
for class-specific or class-agnostic, where B is the total number of predicted masks
in all images, C is the number of foreground classes, and Hmask, Wmask are the height
and width of the mask predictions. The values are logits.
pred_instances (list[Instances]): A list of N Instances, where N is the number of images
in the batch. Each Instances must have field "pred_classes".
Returns:
None. pred_instances will contain an extra "pred_masks" field storing a mask of size (Hmask,
Wmask) for predicted class. Note that the masks are returned as a soft (non-quantized)
masks the resolution predicted by the network; post-processing steps, such as resizing
the predicted masks to the original image resolution and/or binarizing them, is left
to the caller.
"""
cls_agnostic_mask = pred_mask_logits.size(1) == 1
if cls_agnostic_mask:
mask_probs_pred = pred_mask_logits.sigmoid()
else:
# Select masks corresponding to the predicted classes
num_masks = pred_mask_logits.shape[0]
class_pred = cat([i.pred_classes for i in pred_instances])
indices = torch.arange(num_masks, device=class_pred.device)
mask_probs_pred = pred_mask_logits[indices, class_pred][:, None].sigmoid()
# mask_probs_pred.shape: (B, 1, Hmask, Wmask)
num_boxes_per_image = [len(i) for i in pred_instances]
mask_probs_pred = mask_probs_pred.split(num_boxes_per_image, dim=0)
for prob, instances in zip(mask_probs_pred, pred_instances):
instances.pred_masks = prob # (1, Hmask, Wmask)
class BaseMaskRCNNHead(nn.Module):
"""
Implement the basic Mask R-CNN losses and inference logic described in :paper:`Mask R-CNN`
"""
@configurable
def __init__(self, *, loss_weight: float = 1.0, vis_period: int = 0):
"""
NOTE: this interface is experimental.
Args:
loss_weight (float): multiplier of the loss
vis_period (int): visualization period
"""
super().__init__()
self.vis_period = vis_period
self.loss_weight = loss_weight
@classmethod
def from_config(cls, cfg, input_shape):
return {"vis_period": cfg.VIS_PERIOD}
def forward(self, x, instances: List[Instances]):
"""
Args:
x: input region feature(s) provided by :class:`ROIHeads`.
instances (list[Instances]): contains the boxes & labels corresponding
to the input features.
Exact format is up to its caller to decide.
Typically, this is the foreground instances in training, with
"proposal_boxes" field and other gt annotations.
In inference, it contains boxes that are already predicted.
Returns:
A dict of losses in training. The predicted "instances" in inference.
"""
x = self.layers(x)
if self.training:
return {"loss_mask": mask_rcnn_loss(x, instances, self.vis_period) * self.loss_weight}
else:
mask_rcnn_inference(x, instances)
return instances
def layers(self, x):
"""
Neural network layers that makes predictions from input features.
"""
raise NotImplementedError
# To get torchscript support, we make the head a subclass of `nn.Sequential`.
# Therefore, to add new layers in this head class, please make sure they are
# added in the order they will be used in forward().
@ROI_MASK_HEAD_REGISTRY.register()
class MaskRCNNConvUpsampleHead(BaseMaskRCNNHead, nn.Sequential):
"""
A mask head with several conv layers, plus an upsample layer (with `ConvTranspose2d`).
Predictions are made with a final 1x1 conv layer.
"""
@configurable
def __init__(self, input_shape: ShapeSpec, *, num_classes, conv_dims, conv_norm="", **kwargs):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature
num_classes (int): the number of foreground classes (i.e. background is not
included). 1 if using class agnostic prediction.
conv_dims (list[int]): a list of N>0 integers representing the output dimensions
of N-1 conv layers and the last upsample layer.
conv_norm (str or callable): normalization for the conv layers.
See :func:`detectron2.layers.get_norm` for supported types.
"""
super().__init__(**kwargs)
assert len(conv_dims) >= 1, "conv_dims have to be non-empty!"
self.conv_norm_relus = []
cur_channels = input_shape.channels
for k, conv_dim in enumerate(conv_dims[:-1]):
conv = Conv2d(
cur_channels,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=not conv_norm,
norm=get_norm(conv_norm, conv_dim),
activation=nn.ReLU(),
)
self.add_module("mask_fcn{}".format(k + 1), conv)
self.conv_norm_relus.append(conv)
cur_channels = conv_dim
self.deconv = ConvTranspose2d(
cur_channels, conv_dims[-1], kernel_size=2, stride=2, padding=0
)
self.add_module("deconv_relu", nn.ReLU())
cur_channels = conv_dims[-1]
self.predictor = Conv2d(cur_channels, num_classes, kernel_size=1, stride=1, padding=0)
for layer in self.conv_norm_relus + [self.deconv]:
weight_init.c2_msra_fill(layer)
# use normal distribution initialization for mask prediction layer
nn.init.normal_(self.predictor.weight, std=0.001)
if self.predictor.bias is not None:
nn.init.constant_(self.predictor.bias, 0)
@classmethod
def from_config(cls, cfg, input_shape):
ret = super().from_config(cfg, input_shape)
conv_dim = cfg.MODEL.ROI_MASK_HEAD.CONV_DIM
num_conv = cfg.MODEL.ROI_MASK_HEAD.NUM_CONV
ret.update(
conv_dims=[conv_dim] * (num_conv + 1), # +1 for ConvTranspose
conv_norm=cfg.MODEL.ROI_MASK_HEAD.NORM,
input_shape=input_shape,
)
if cfg.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK:
ret["num_classes"] = 1
else:
ret["num_classes"] = cfg.MODEL.ROI_HEADS.NUM_CLASSES
return ret
def layers(self, x):
for layer in self:
x = layer(x)
return x
def build_mask_head(cfg, input_shape):
"""
Build a mask head defined by `cfg.MODEL.ROI_MASK_HEAD.NAME`.
"""
name = cfg.MODEL.ROI_MASK_HEAD.NAME
return ROI_MASK_HEAD_REGISTRY.get(name)(cfg, input_shape)