Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
""" | |
This file contains primitives for multi-gpu communication. | |
This is useful when doing distributed training. | |
""" | |
import functools | |
import logging | |
import numpy as np | |
import pickle | |
import torch | |
import torch.distributed as dist | |
import diffdist | |
from torch import nn | |
from torch.nn import functional as F | |
_LOCAL_PROCESS_GROUP = None | |
""" | |
A torch process group which only includes processes that on the same machine as the current process. | |
This variable is set when processes are spawned by `launch()` in "engine/launch.py". | |
""" | |
def get_world_size() -> int: | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank() -> int: | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def get_local_rank() -> int: | |
""" | |
Returns: | |
The rank of the current process within the local (per-machine) process group. | |
""" | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
assert _LOCAL_PROCESS_GROUP is not None | |
return dist.get_rank(group=_LOCAL_PROCESS_GROUP) | |
def get_local_size() -> int: | |
""" | |
Returns: | |
The size of the per-machine process group, | |
i.e. the number of processes per machine. | |
""" | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) | |
def is_main_process() -> bool: | |
return get_rank() == 0 | |
def synchronize(): | |
""" | |
Helper function to synchronize (barrier) among all processes when | |
using distributed training | |
""" | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
if world_size == 1: | |
return | |
dist.barrier() | |
def _get_global_gloo_group(): | |
""" | |
Return a process group based on gloo backend, containing all the ranks | |
The result is cached. | |
""" | |
if dist.get_backend() == "nccl": | |
return dist.new_group(backend="gloo") | |
else: | |
return dist.group.WORLD | |
def _serialize_to_tensor(data, group): | |
backend = dist.get_backend(group) | |
assert backend in ["gloo", "nccl"] | |
device = torch.device("cpu" if backend == "gloo" else "cuda") | |
buffer = pickle.dumps(data) | |
if len(buffer) > 1024 ** 3: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
"Rank {} trying to all-gather {:.2f} GB of data on device {}".format( | |
get_rank(), len(buffer) / (1024 ** 3), device | |
) | |
) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to(device=device) | |
return tensor | |
def _pad_to_largest_tensor(tensor, group): | |
""" | |
Returns: | |
list[int]: size of the tensor, on each rank | |
Tensor: padded tensor that has the max size | |
""" | |
world_size = dist.get_world_size(group=group) | |
assert ( | |
world_size >= 1 | |
), "comm.gather/all_gather must be called from ranks within the given group!" | |
local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device) | |
size_list = [ | |
torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) | |
] | |
dist.all_gather(size_list, local_size, group=group) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
if local_size != max_size: | |
padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device) | |
tensor = torch.cat((tensor, padding), dim=0) | |
return size_list, tensor | |
def all_gather(data, group=None): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors). | |
Args: | |
data: any picklable object | |
group: a torch process group. By default, will use a group which | |
contains all ranks on gloo backend. | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
if get_world_size() == 1: | |
return [data] | |
if group is None: | |
group = _get_global_gloo_group() | |
if dist.get_world_size(group) == 1: | |
return [data] | |
tensor = _serialize_to_tensor(data, group) | |
size_list, tensor = _pad_to_largest_tensor(tensor, group) | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
tensor_list = [ | |
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list | |
] | |
dist.all_gather(tensor_list, tensor, group=group) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def gather(data, dst=0, group=None): | |
""" | |
Run gather on arbitrary picklable data (not necessarily tensors). | |
Args: | |
data: any picklable object | |
dst (int): destination rank | |
group: a torch process group. By default, will use a group which | |
contains all ranks on gloo backend. | |
Returns: | |
list[data]: on dst, a list of data gathered from each rank. Otherwise, | |
an empty list. | |
""" | |
if get_world_size() == 1: | |
return [data] | |
if group is None: | |
group = _get_global_gloo_group() | |
if dist.get_world_size(group=group) == 1: | |
return [data] | |
rank = dist.get_rank(group=group) | |
tensor = _serialize_to_tensor(data, group) | |
size_list, tensor = _pad_to_largest_tensor(tensor, group) | |
# receiving Tensor from all ranks | |
if rank == dst: | |
max_size = max(size_list) | |
tensor_list = [ | |
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list | |
] | |
dist.gather(tensor, tensor_list, dst=dst, group=group) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
else: | |
dist.gather(tensor, [], dst=dst, group=group) | |
return [] | |
def shared_random_seed(): | |
""" | |
Returns: | |
int: a random number that is the same across all workers. | |
If workers need a shared RNG, they can use this shared seed to | |
create one. | |
All workers must call this function, otherwise it will deadlock. | |
""" | |
ints = np.random.randint(2 ** 31) | |
all_ints = all_gather(ints) | |
return all_ints[0] | |
def reduce_dict(input_dict, average=True): | |
""" | |
Reduce the values in the dictionary from all processes so that process with rank | |
0 has the reduced results. | |
Args: | |
input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. | |
average (bool): whether to do average or sum | |
Returns: | |
a dict with the same keys as input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.reduce(values, dst=0) | |
if dist.get_rank() == 0 and average: | |
# only main process gets accumulated, so only divide by | |
# world_size in this case | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |
def gather_tensors(tensor, method=""): | |
""" | |
Performs all_gather operation on the provided tensors. | |
*** Warning ***: torch.distributed.all_gather has no gradient. | |
""" | |
world_size = get_world_size() | |
rank = get_rank() | |
if world_size <= 1: | |
return tensor, tensor.shape[0] | |
batch_size = torch.tensor(tensor.shape[0], device=tensor.device) | |
batch_size_full = [torch.zeros_like(batch_size) | |
for _ in range(world_size)] | |
dist.all_gather(batch_size_full, batch_size) | |
# cutting all data to min batch size across all GPUs | |
min_bs = min([bs.item() for bs in batch_size_full]) | |
if min_bs < batch_size: | |
tensor = tensor[:min_bs] | |
if "svd" in method: | |
# curently, svd does not support half-precision | |
# convert tenosr back to full-precision | |
with torch.cuda.amp.autocast(enabled=False): | |
U, Sig, V = torch.svd_lowrank(tensor.cpu(), q=int(method.split("_")[1])) | |
# gather U | |
Us = _gather_tensor(U.to(tensor.device), world_size) # N x B x LR | |
Sigs = _gather_tensor(torch.diag(Sig.to(tensor.device)), world_size) # N x LR x LR | |
Vs = _gather_tensor(V.to(tensor.device).T, world_size) # N x LR x D | |
# perform batch mm | |
# outputs = [] | |
# for k in range(Us.shape[0]): | |
# temp = torch.mm(Us[k], Sigs[k]) # B x LR | |
# output = torch.mm(temp, Vs[k]) # B x D | |
# outputs.append(output) | |
# outputs[rank] = tensor | |
# output = torch.cat(outputs, 0) | |
output = torch.bmm(torch.bmm(Us, Sigs), Vs) | |
output[rank] = tensor | |
output = output.view(-1, output.shape[-1]) | |
elif "pca" in method: | |
raise NotImplementedError | |
else: | |
tensors_gather = [ | |
torch.ones_like(tensor) | |
for _ in range(world_size) | |
] | |
# dist.all_gather(tensors_gather, tensor, async_op=False) | |
# need to do this to restore propagation of the gradients | |
# tensors_gather[rank] = tensor | |
tensors_gather = diffdist.functional.all_gather(tensors_gather, tensor) | |
output = torch.cat(tensors_gather, dim=0) | |
return output, min_bs | |
class SoftTargetCrossEntropy(nn.Module): | |
def __init__(self): | |
super(SoftTargetCrossEntropy, self).__init__() | |
def forward(self, x, target, dim=-1): | |
loss = torch.sum(-target * F.log_softmax(x, dim=dim), dim=dim) / (torch.sum(target, dim=dim) + 1e-6) | |
return loss.mean() | |
class MILCrossEntropy(nn.Module): | |
""" | |
Multi-instance learning loss | |
""" | |
def __init__(self): | |
super(MILCrossEntropy, self).__init__() | |
def forward(self, x, target, dim=-1, weights=None, avg_positives=False): | |
# for numerical stability | |
logits_max, _ = torch.max(x, dim=1, keepdim=True) | |
logits = x - logits_max.detach() | |
exp_logits = torch.exp(logits) | |
# get non-zero entries off-diagonal | |
# identity = torch.eye(target.shape[0]).type_as(target) | |
# laplacian = 1 - (target - identity) | |
probs = exp_logits / (exp_logits).sum(dim=dim, keepdim=True) | |
if avg_positives: # average the logits over positive targets | |
loss = -torch.log(torch.sum(target * probs, dim=dim) / (torch.sum(target, dim=dim) + 1e-6)) | |
else: # sum the logits over positive targets | |
loss = -torch.log(torch.sum(target * probs, dim=dim)) | |
if weights is not None: | |
return (loss * weights).mean() | |
return loss.mean() |