Spaces:
Running
Running
Bokeh figure - adjustable width
Browse files- analyze_winscore.py +12 -6
analyze_winscore.py
CHANGED
@@ -125,12 +125,18 @@ def create_scatter_plot_with_curve_with_variances_named(category, variance_acros
|
|
125 |
})
|
126 |
|
127 |
# Create a figure for the category
|
128 |
-
p = figure(
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Plot filtered data with unique colors and scaled marker sizes
|
136 |
p.scatter('x', 'y', size='marker_sizes', source=source_filtered, fill_alpha=0.6, color='color', marker='symbol')
|
|
|
125 |
})
|
126 |
|
127 |
# Create a figure for the category
|
128 |
+
p = figure(
|
129 |
+
sizing_mode="stretch_width",
|
130 |
+
height=800,
|
131 |
+
#title=f"{category} vs Model Size vs Variance Across Categories",
|
132 |
+
#tools="pan,wheel_zoom,box_zoom,reset,save",
|
133 |
+
tooltips=[
|
134 |
+
("Model", "@model_names"),
|
135 |
+
("Model Size (B parameters)", "@sizes"),
|
136 |
+
("Variance", "@variance"), # Added variance to the tooltip
|
137 |
+
("Performance", "@y"),
|
138 |
+
]
|
139 |
+
)
|
140 |
|
141 |
# Plot filtered data with unique colors and scaled marker sizes
|
142 |
p.scatter('x', 'y', size='marker_sizes', source=source_filtered, fill_alpha=0.6, color='color', marker='symbol')
|