File size: 7,713 Bytes
0fdb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2ea22fb4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r\n",
      "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.1\u001b[0m\r\n",
      "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n"
     ]
    }
   ],
   "source": [
    "!pip install -qU google-api-python-client"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5d8d76d9",
   "metadata": {},
   "source": [
    "# Conversation buffer memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "0d9e8e8f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.utilities import GoogleSearchAPIWrapper\n",
    "\n",
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "96286dd4",
   "metadata": {},
   "outputs": [],
   "source": [
    "template = \"\"\"This is a piece of financial report, namely Form 10-K, section 7:\n",
    "\n",
    "{chat_history}\n",
    "\n",
    "Summarize this text into 2-3 sentences as best as you can.\n",
    "\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(input_variables=[\"chat_history\"], template=template)\n",
    "memory = ConversationBufferMemory(memory_key=\"chat_history\")\n",
    "readonlymemory = ReadOnlySharedMemory(memory=memory)\n",
    "summary_chain = LLMChain(\n",
    "    llm=OpenAI(),\n",
    "    prompt=prompt,\n",
    "    verbose=True,\n",
    "    memory=readonlymemory,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d76360b0",
   "metadata": {},
   "outputs": [],
   "source": [
    "search = GoogleSearchAPIWrapper()\n",
    "tools = [\n",
    "    Tool(\n",
    "        name=\"Search\",\n",
    "        func=search.run,\n",
    "        description=\"useful for when you need to answer questions about current events or find some relevant information on the internet.\",\n",
    "    ),\n",
    "    Tool(\n",
    "        name=\"Summary\",\n",
    "        func=summary_chain.run,\n",
    "        description=\"useful for when you need to summarize a piece of financial report text. The input to this tool should be a string.\",\n",
    "    ),\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c6a7dc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "prefix = \"\"\"\n",
    "You are the best broker in the world. You are asked to read the financial report for some company.\n",
    "Then you should suggest what is the best action: sell, buy or hold. You need to return only of those three options.\n",
    "\"\"\"\n",
    "suffix = \"\"\"Begin!\n",
    "\n",
    "{chat_history}\n",
    "Question: {input}\n",
    "{agent_scratchpad}\"\"\"\n",
    "\n",
    "prompt = ZeroShotAgent.create_prompt(\n",
    "    tools,\n",
    "    prefix=prefix,\n",
    "    suffix=suffix,\n",
    "    input_variables=[\"text_chunk\", \"chat_history\", \"agent_scratchpad\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3bd67b6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
    "agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
    "agent_chain = AgentExecutor.from_agent_and_tools(\n",
    "    agent=agent, tools=tools, verbose=True, memory=memory\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "925c632e",
   "metadata": {},
   "source": [
    "# Conversation summarization memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6c72c255",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8af6c4ab",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9885e240",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "1c7b7e74",
   "metadata": {},
   "source": [
    "# Entity memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "e3423486",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.llms import OpenAI\n",
    "from langchain.memory import ConversationEntityMemory\n",
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "d36440a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "memory = ConversationEntityMemory(llm=llm)\n",
    "_input = {\"input\": \"Deven & Sam are working on a hackathon project\"}\n",
    "memory.load_memory_variables(_input)\n",
    "memory.save_context(\n",
    "    _input,\n",
    "    {\"output\": \" That sounds like a great project! What kind of project are they working on?\"}\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "95b32eb8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'history': 'Human: Deven & Sam are working on a hackathon project\\nAI:  That sounds like a great project! What kind of project are they working on?',\n",
       " 'entities': {'Sam': 'Sam is working on a hackathon project with Deven.'}}"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "memory.load_memory_variables({\"input\": 'who is Sam'})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "8b763a07",
   "metadata": {},
   "outputs": [],
   "source": [
    "memory = ConversationEntityMemory(llm=llm, return_messages=True)\n",
    "_input = {\"input\": \"Deven & Sam are working on a hackathon project\"}\n",
    "memory.load_memory_variables(_input)\n",
    "memory.save_context(\n",
    "    _input,\n",
    "    {\"output\": \" That sounds like a great project! What kind of project are they working on?\"}\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "a95a2393",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'history': [HumanMessage(content='Deven & Sam are working on a hackathon project'),\n",
       "  AIMessage(content=' That sounds like a great project! What kind of project are they working on?')],\n",
       " 'entities': {'Sam': 'Sam is working on a hackathon project with Deven.'}}"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "memory.load_memory_variables({\"input\": 'who is Sam'})"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}