File size: 25,259 Bytes
0fdb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import collections
import random
from collections import Counter, defaultdict
from dataclasses import dataclass, field, fields
from pathlib import Path
from platform import python_version
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import datasets
import tokenizers
import torch
import transformers
from datasets import Dataset
from huggingface_hub import CardData, DatasetFilter, ModelCard, dataset_info, list_datasets, model_info
from huggingface_hub.repocard_data import EvalResult, eval_results_to_model_index
from huggingface_hub.utils import yaml_dump
from sentence_transformers import __version__ as sentence_transformers_version
from transformers import PretrainedConfig, TrainerCallback
from transformers.integrations import CodeCarbonCallback
from transformers.modelcard import make_markdown_table
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.training_args import TrainingArguments

from setfit import __version__ as setfit_version

from . import logging


logger = logging.get_logger(__name__)

if TYPE_CHECKING:
    from setfit.modeling import SetFitModel
    from setfit.trainer import Trainer


class ModelCardCallback(TrainerCallback):
    def __init__(self, trainer: "Trainer") -> None:
        super().__init__()
        self.trainer = trainer

        callbacks = [
            callback
            for callback in self.trainer.callback_handler.callbacks
            if isinstance(callback, CodeCarbonCallback)
        ]
        if callbacks:
            trainer.model.model_card_data.code_carbon_callback = callbacks[0]

    def on_init_end(

        self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: "SetFitModel", **kwargs

    ):
        if not model.model_card_data.dataset_id:
            # Inferring is hacky - it may break in the future, so let's be safe
            try:
                model.model_card_data.infer_dataset_id(self.trainer.train_dataset)
            except Exception:
                pass

        dataset = self.trainer.eval_dataset or self.trainer.train_dataset
        if dataset is not None:
            if not model.model_card_data.widget:
                model.model_card_data.set_widget_examples(dataset)

        if self.trainer.train_dataset:
            model.model_card_data.set_train_set_metrics(self.trainer.train_dataset)
            # Does not work for multilabel
            try:
                model.model_card_data.num_classes = len(set(self.trainer.train_dataset["label"]))
                model.model_card_data.set_label_examples(self.trainer.train_dataset)
            except Exception:
                pass

    def on_train_begin(

        self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: "SetFitModel", **kwargs

    ) -> None:
        # model.model_card_data.hyperparameters = extract_hyperparameters_from_trainer(self.trainer)
        ignore_keys = {
            "output_dir",
            "logging_dir",
            "logging_strategy",
            "logging_first_step",
            "logging_steps",
            "evaluation_strategy",
            "eval_steps",
            "eval_delay",
            "save_strategy",
            "save_steps",
            "save_total_limit",
            "metric_for_best_model",
            "greater_is_better",
            "report_to",
            "samples_per_label",
            "show_progress_bar",
        }
        get_name_keys = {"loss", "distance_metric"}
        args_dict = args.to_dict()
        model.model_card_data.hyperparameters = {
            key: value.__name__ if key in get_name_keys else value
            for key, value in args_dict.items()
            if key not in ignore_keys and value is not None
        }

    def on_evaluate(

        self,

        args: TrainingArguments,

        state: TrainerState,

        control: TrainerControl,

        model: "SetFitModel",

        metrics: Dict[str, float],

        **kwargs,

    ) -> None:
        if (
            model.model_card_data.eval_lines_list
            and model.model_card_data.eval_lines_list[-1]["Step"] == state.global_step
        ):
            model.model_card_data.eval_lines_list[-1]["Validation Loss"] = metrics["eval_embedding_loss"]
        else:
            model.model_card_data.eval_lines_list.append(
                {
                    # "Training Loss": self.state.log_history[-1]["loss"] if "loss" in self.state.log_history[-1] else "-",
                    "Epoch": state.epoch,
                    "Step": state.global_step,
                    "Training Loss": "-",
                    "Validation Loss": metrics["eval_embedding_loss"],
                }
            )

    def on_log(

        self,

        args: TrainingArguments,

        state: TrainerState,

        control: TrainerControl,

        model: "SetFitModel",

        logs: Dict[str, float],

        **kwargs,

    ):
        keys = {"embedding_loss", "polarity_embedding_loss", "aspect_embedding_loss"} & set(logs)
        if keys:
            if (
                model.model_card_data.eval_lines_list
                and model.model_card_data.eval_lines_list[-1]["Step"] == state.global_step
            ):
                model.model_card_data.eval_lines_list[-1]["Training Loss"] = logs[keys.pop()]
            else:
                model.model_card_data.eval_lines_list.append(
                    {
                        "Epoch": state.epoch,
                        "Step": state.global_step,
                        "Training Loss": logs[keys.pop()],
                        "Validation Loss": "-",
                    }
                )


YAML_FIELDS = [
    "language",
    "license",
    "library_name",
    "tags",
    "datasets",
    "metrics",
    "pipeline_tag",
    "widget",
    "model-index",
    "co2_eq_emissions",
    "base_model",
    "inference",
]
IGNORED_FIELDS = ["model"]


@dataclass
class SetFitModelCardData(CardData):
    """A dataclass storing data used in the model card.



    Args:

        language (`Optional[Union[str, List[str]]]`): The model language, either a string or a list,

            e.g. "en" or ["en", "de", "nl"]

        license (`Optional[str]`): The license of the model, e.g. "apache-2.0", "mit",

            or "cc-by-nc-sa-4.0"

        model_name (`Optional[str]`): The pretty name of the model, e.g. "SetFit with mBERT-base on SST2".

            If not defined, uses encoder_name/encoder_id and dataset_name/dataset_id to generate a model name.

        model_id (`Optional[str]`): The model ID when pushing the model to the Hub,

            e.g. "tomaarsen/span-marker-mbert-base-multinerd".

        dataset_name (`Optional[str]`): The pretty name of the dataset, e.g. "SST2".

        dataset_id (`Optional[str]`): The dataset ID of the dataset, e.g. "dair-ai/emotion".

        dataset_revision (`Optional[str]`): The dataset revision/commit that was for training/evaluation.

        st_id (`Optional[str]`): The Sentence Transformers model ID.



    <Tip>



    Install [``codecarbon``](https://github.com/mlco2/codecarbon) to automatically track carbon emission usage and

    include it in your model cards.



    </Tip>



    Example::



        >>> model = SetFitModel.from_pretrained(

        ...     "sentence-transformers/paraphrase-mpnet-base-v2",

        ...     labels=["negative", "positive"],

        ...     # Model card variables

        ...     model_card_data=SetFitModelCardData(

        ...         model_id="tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2",

        ...         dataset_name="SST2",

        ...         dataset_id="sst2",

        ...         license="apache-2.0",

        ...         language="en",

        ...     ),

        ... )

    """

    # Potentially provided by the user
    language: Optional[Union[str, List[str]]] = None
    license: Optional[str] = None
    tags: Optional[List[str]] = field(
        default_factory=lambda: [
            "setfit",
            "sentence-transformers",
            "text-classification",
            "generated_from_setfit_trainer",
        ]
    )
    model_name: Optional[str] = None
    model_id: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_id: Optional[str] = None
    dataset_revision: Optional[str] = None
    task_name: Optional[str] = None
    st_id: Optional[str] = None

    # Automatically filled by `ModelCardCallback` and the Trainer directly
    hyperparameters: Dict[str, Any] = field(default_factory=dict, init=False)
    eval_results_dict: Optional[Dict[str, Any]] = field(default_factory=dict, init=False)
    eval_lines_list: List[Dict[str, float]] = field(default_factory=list, init=False)
    metric_lines: List[Dict[str, float]] = field(default_factory=list, init=False)
    widget: List[Dict[str, str]] = field(default_factory=list, init=False)
    predict_example: Optional[str] = field(default=None, init=False)
    label_example_list: List[Dict[str, str]] = field(default_factory=list, init=False)
    tokenizer_warning: bool = field(default=False, init=False)
    train_set_metrics_list: List[Dict[str, str]] = field(default_factory=list, init=False)
    train_set_sentences_per_label_list: List[Dict[str, str]] = field(default_factory=list, init=False)
    code_carbon_callback: Optional[CodeCarbonCallback] = field(default=None, init=False)
    num_classes: Optional[int] = field(default=None, init=False)
    best_model_step: Optional[int] = field(default=None, init=False)
    metrics: List[str] = field(default_factory=lambda: ["accuracy"], init=False)

    # Computed once, always unchanged
    pipeline_tag: str = field(default="text-classification", init=False)
    library_name: str = field(default="setfit", init=False)
    version: Dict[str, str] = field(
        default_factory=lambda: {
            "python": python_version(),
            "setfit": setfit_version,
            "sentence_transformers": sentence_transformers_version,
            "transformers": transformers.__version__,
            "torch": torch.__version__,
            "datasets": datasets.__version__,
            "tokenizers": tokenizers.__version__,
        },
        init=False,
    )

    # ABSA-related arguments
    absa: Dict[str, Any] = field(default=None, init=False, repr=False)

    # Passed via `register_model` only
    model: Optional["SetFitModel"] = field(default=None, init=False, repr=False)
    head_class: Optional[str] = field(default=None, init=False, repr=False)
    inference: Optional[bool] = field(default=True, init=False, repr=False)

    def __post_init__(self):
        # We don't want to save "ignore_metadata_errors" in our Model Card
        if self.dataset_id:
            if is_on_huggingface(self.dataset_id, is_model=False):
                if self.language is None:
                    # if languages are not set, try to determine the language from the dataset on the Hub
                    try:
                        info = dataset_info(self.dataset_id)
                    except Exception:
                        pass
                    else:
                        if info.cardData:
                            self.language = info.cardData.get("language", self.language)
            else:
                logger.warning(
                    f"The provided {self.dataset_id!r} dataset could not be found on the Hugging Face Hub."
                    " Setting `dataset_id` to None."
                )
                self.dataset_id = None

        if self.model_id and self.model_id.count("/") != 1:
            logger.warning(
                f"The provided {self.model_id!r} model ID should include the organization or user,"
                ' such as "tomaarsen/setfit-bge-small-v1.5-sst2-8-shot". Setting `model_id` to None.'
            )
            self.model_id = None

    def set_best_model_step(self, step: int) -> None:
        self.best_model_step = step

    def set_widget_examples(self, dataset: Dataset) -> None:
        samples = dataset.select(random.sample(range(len(dataset)), k=min(len(dataset), 5)))["text"]
        self.widget = [{"text": sample} for sample in samples]

        samples.sort(key=len)
        if samples:
            self.predict_example = samples[0]

    def set_train_set_metrics(self, dataset: Dataset) -> None:
        def add_naive_word_count(sample: Dict[str, Any]) -> Dict[str, Any]:
            sample["word_count"] = len(sample["text"].split(" "))
            return sample

        dataset = dataset.map(add_naive_word_count)
        self.train_set_metrics_list = [
            {
                "Training set": "Word count",
                "Min": min(dataset["word_count"]),
                "Median": sum(dataset["word_count"]) / len(dataset),
                "Max": max(dataset["word_count"]),
            },
        ]
        # E.g. if unlabeled via DistillationTrainer
        if "label" not in dataset.column_names:
            return

        sample_label = dataset[0]["label"]
        if isinstance(sample_label, collections.abc.Sequence) and not isinstance(sample_label, str):
            return
        try:
            counter = Counter(dataset["label"])
            if self.model.labels:
                self.train_set_sentences_per_label_list = [
                    {
                        "Label": str_label,
                        "Training Sample Count": counter[
                            str_label if isinstance(sample_label, str) else self.model.label2id[str_label]
                        ],
                    }
                    for str_label in self.model.labels
                ]
            else:
                self.train_set_sentences_per_label_list = [
                    {
                        "Label": self.model.labels[label]
                        if self.model.labels and isinstance(label, int)
                        else str(label),
                        "Training Sample Count": count,
                    }
                    for label, count in sorted(counter.items())
                ]
        except Exception:
            # There are some tricky edge cases possible, e.g. if the user provided integer labels that do not fall
            # between 0 to num_classes-1, so we make sure we never cause errors.
            pass

    def set_label_examples(self, dataset: Dataset) -> None:
        num_examples_per_label = 3
        examples = defaultdict(list)
        finished_labels = set()
        for sample in dataset:
            text = sample["text"]
            label = sample["label"]
            if label not in finished_labels:
                examples[label].append(f"<li>{repr(text)}</li>")
                if len(examples[label]) >= num_examples_per_label:
                    finished_labels.add(label)
            if len(finished_labels) == self.num_classes:
                break
        self.label_example_list = [
            {
                "Label": self.model.labels[label] if self.model.labels and isinstance(label, int) else label,
                "Examples": "<ul>" + "".join(example_set) + "</ul>",
            }
            for label, example_set in examples.items()
        ]

    def infer_dataset_id(self, dataset: Dataset) -> None:
        def subtuple_finder(tuple: Tuple[str], subtuple: Tuple[str]) -> int:
            for i, element in enumerate(tuple):
                if element == subtuple[0] and tuple[i : i + len(subtuple)] == subtuple:
                    return i
            return -1

        def normalize(dataset_id: str) -> str:
            for token in "/\\_-":
                dataset_id = dataset_id.replace(token, "")
            return dataset_id.lower()

        cache_files = dataset.cache_files
        if cache_files and "filename" in cache_files[0]:
            cache_path_parts = Path(cache_files[0]["filename"]).parts
            # Check if the cachefile is under "huggingface/datasets"
            subtuple = ("huggingface", "datasets")
            index = subtuple_finder(cache_path_parts, subtuple)
            if index == -1:
                return

            # Get the folder after "huggingface/datasets"
            cache_dataset_name = cache_path_parts[index + len(subtuple)]
            # If the dataset has an author:
            if "___" in cache_dataset_name:
                author, dataset_name = cache_dataset_name.split("___")
            else:
                author = None
                dataset_name = cache_dataset_name

            # Make sure the normalized dataset IDs match
            dataset_list = [
                dataset
                for dataset in list_datasets(filter=DatasetFilter(author=author, dataset_name=dataset_name))
                if normalize(dataset.id) == normalize(cache_dataset_name)
            ]
            # If there's only one match, get the ID from it
            if len(dataset_list) == 1:
                self.dataset_id = dataset_list[0].id

    def register_model(self, model: "SetFitModel") -> None:
        self.model = model
        head_class = model.model_head.__class__.__name__
        self.head_class = {
            "LogisticRegression": "[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)",
            "SetFitHead": "[SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead)",
        }.get(head_class, head_class)

        if not self.model_name:
            if self.st_id:
                self.model_name = f"SetFit with {self.st_id}"
                if self.dataset_name or self.dataset_id:
                    self.model_name += f" on {self.dataset_name or self.dataset_id}"
            else:
                self.model_name = "SetFit"

        self.inference = self.model.multi_target_strategy is None

    def infer_st_id(self, setfit_model_id: str) -> None:
        config_dict, _ = PretrainedConfig.get_config_dict(setfit_model_id)
        st_id = config_dict.get("_name_or_path")
        st_id_path = Path(st_id)
        # Sometimes the name_or_path ends exactly with the model_id, e.g.
        # "C:\\Users\\tom/.cache\\torch\\sentence_transformers\\BAAI_bge-small-en-v1.5\\"
        candidate_model_ids = ["/".join(st_id_path.parts[-2:])]
        # Sometimes the name_or_path its final part contains the full model_id, with "/" replaced with a "_", e.g.
        # "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/"
        # In that case, we take the last part, split on _, and try all combinations
        # e.g. "a_b_c_d" -> ['a/b_c_d', 'a_b/c_d', 'a_b_c/d']
        splits = st_id_path.name.split("_")
        candidate_model_ids += ["_".join(splits[:idx]) + "/" + "_".join(splits[idx:]) for idx in range(1, len(splits))]
        for model_id in candidate_model_ids:
            if is_on_huggingface(model_id):
                self.st_id = model_id
                break

    def set_st_id(self, model_id: str) -> None:
        if is_on_huggingface(model_id):
            self.st_id = model_id

    def post_training_eval_results(self, results: Dict[str, float]) -> None:
        def try_to_pure_python(value: Any) -> Any:
            """Try to convert a value from a Numpy or Torch scalar to pure Python, if not already pure Python"""
            try:
                if hasattr(value, "dtype"):
                    return value.item()
            except Exception:
                pass
            return value

        pure_python_results = {key: try_to_pure_python(value) for key, value in results.items()}
        results_without_split = {
            key.split("_", maxsplit=1)[1].title(): value for key, value in pure_python_results.items()
        }
        self.eval_results_dict = pure_python_results
        self.metric_lines = [{"Label": "**all**", **results_without_split}]

    def _maybe_round(self, v, decimals=4):
        if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals:
            return f"{v:.{decimals}f}"
        return str(v)

    def to_dict(self) -> Dict[str, Any]:
        super_dict = {field.name: getattr(self, field.name) for field in fields(self)}

        # Compute required formats from the raw data
        if self.eval_results_dict:
            dataset_split = list(self.eval_results_dict.keys())[0].split("_")[0]
            dataset_id = self.dataset_id or "unknown"
            dataset_name = self.dataset_name or self.dataset_id or "Unknown"
            eval_results = [
                EvalResult(
                    task_type="text-classification",
                    dataset_type=dataset_id,
                    dataset_name=dataset_name,
                    dataset_split=dataset_split,
                    dataset_revision=self.dataset_revision,
                    metric_type=metric_key.split("_", maxsplit=1)[1],
                    metric_value=metric_value,
                    task_name="Text Classification",
                    metric_name=metric_key.split("_", maxsplit=1)[1].title(),
                )
                for metric_key, metric_value in self.eval_results_dict.items()
            ]
            super_dict["metrics"] = [metric_key.split("_", maxsplit=1)[1] for metric_key in self.eval_results_dict]
            super_dict["model-index"] = eval_results_to_model_index(self.model_name, eval_results)
        eval_lines_list = [
            {
                key: f"**{self._maybe_round(value)}**" if line["Step"] == self.best_model_step else value
                for key, value in line.items()
            }
            for line in self.eval_lines_list
        ]
        super_dict["eval_lines"] = make_markdown_table(eval_lines_list)
        super_dict["explain_bold_in_eval"] = "**" in super_dict["eval_lines"]
        # Replace |:---:| with |:---| for left alignment
        super_dict["label_examples"] = make_markdown_table(self.label_example_list).replace("-:|", "--|")
        super_dict["train_set_metrics"] = make_markdown_table(self.train_set_metrics_list).replace("-:|", "--|")
        super_dict["train_set_sentences_per_label_list"] = make_markdown_table(
            self.train_set_sentences_per_label_list
        ).replace("-:|", "--|")
        super_dict["metrics_table"] = make_markdown_table(self.metric_lines).replace("-:|", "--|")
        if self.code_carbon_callback and self.code_carbon_callback.tracker:
            emissions_data = self.code_carbon_callback.tracker._prepare_emissions_data()
            super_dict["co2_eq_emissions"] = {
                # * 1000 to convert kg to g
                "emissions": float(emissions_data.emissions) * 1000,
                "source": "codecarbon",
                "training_type": "fine-tuning",
                "on_cloud": emissions_data.on_cloud == "Y",
                "cpu_model": emissions_data.cpu_model,
                "ram_total_size": emissions_data.ram_total_size,
                "hours_used": round(emissions_data.duration / 3600, 3),
            }
            if emissions_data.gpu_model:
                super_dict["co2_eq_emissions"]["hardware_used"] = emissions_data.gpu_model
        if self.dataset_id:
            super_dict["datasets"] = [self.dataset_id]
        if self.st_id:
            super_dict["base_model"] = self.st_id
        super_dict["model_max_length"] = self.model.model_body.get_max_seq_length()
        if super_dict["num_classes"] is None:
            if self.model.labels:
                super_dict["num_classes"] = len(self.model.labels)
        if super_dict["absa"]:
            super_dict.update(super_dict.pop("absa"))

        for key in IGNORED_FIELDS:
            super_dict.pop(key, None)
        return super_dict

    def to_yaml(self, line_break=None) -> str:
        return yaml_dump(
            {key: value for key, value in self.to_dict().items() if key in YAML_FIELDS and value is not None},
            sort_keys=False,
            line_break=line_break,
        ).strip()


def is_on_huggingface(repo_id: str, is_model: bool = True) -> bool:
    # Models with more than two 'sections' certainly are not public models
    if len(repo_id.split("/")) > 2:
        return False

    try:
        if is_model:
            model_info(repo_id)
        else:
            dataset_info(repo_id)
        return True
    except Exception:
        # Fetching models can fail for many reasons: Repository not existing, no internet access, HF down, etc.
        return False


def generate_model_card(model: "SetFitModel") -> str:
    template_path = Path(__file__).parent / "model_card_template.md"
    model_card = ModelCard.from_template(card_data=model.model_card_data, template_path=template_path, hf_emoji="🤗")
    return model_card.content