File size: 4,752 Bytes
0fdb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501f2e5
0fdb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501f2e5
0fdb130
 
 
 
 
501f2e5
0fdb130
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from torch import nn
import matplotlib.pyplot as plt
import numpy as np
# import torch.nn as nn
torch.set_printoptions(sci_mode=False)


class MLP(nn.Module):
    def __init__(self, input_size=768, output_size=3, dropout_rate=.2, class_weights=None):
        super(MLP, self).__init__()
        self.class_weights = class_weights

        # self.bn1 = nn.BatchNorm1d(hidden_size)
        self.dropout = nn.Dropout(dropout_rate)
        
        self.linear = nn.Linear(input_size, output_size)        
        
        # nn.init.kaiming_normal_(self.fc1.weight, nonlinearity='relu')
        # nn.init.kaiming_normal_(self.fc2.weight)

    def forward(self, x):
        # return self.linear(self.dropout(x))
        return self.dropout(self.linear(x))
    
    def predict(self, x):
        _, predicted = torch.max(self.forward(x), 1)
        print('I am predict')
        return predicted
    
    def predict_proba(self, x):
        print('I am predict_proba')
        return self.forward(x)
    
    def get_loss_fn(self):
        return nn.CrossEntropyLoss(weight=self.class_weights, reduction='mean')







if __name__ == '__main__':
    from datasets import load_dataset
    from sentence_transformers import SentenceTransformer
    import sys
    # from datetime import datetime
    # from collections import Counter
    import torch
    import torch.optim as optim
    from torch.utils.data import DataLoader, TensorDataset
    from safetensors.torch import load_model, save_model

    from sklearn.utils.class_weight import compute_class_weight
    import warnings
    
    from train_classificator import (
        # MLP,
        plot_labels_distribution,
        plot_training_metrics,
        train_model, 
        eval_model
    )

    warnings.filterwarnings("ignore")
    
    SEED = 1003200212 + 1
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')



    dataset = load_dataset("CabraVC/vector_dataset_roberta-fine-tuned")
    # plot_labels_distribution(dataset
    #                         #  , save_as_filename=f'plots/labels_distribution_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png'
    #                          )

    input_size = len(dataset['train']['embeddings'][0])
    learning_rate = 5e-4
    weight_decay = 0
    batch_size = 128
    epochs = 40


    class_weights = torch.tensor(compute_class_weight('balanced', classes=[0, 1, 2], y=dataset['train']['labels']), dtype=torch.float) ** .5
    model = MLP(input_size=input_size, class_weights=class_weights)


    criterion = model.get_loss_fn()
    test_data = TensorDataset(torch.tensor(dataset['test']['embeddings']), torch.tensor(dataset['test']['labels']))
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
    loss, accuracy = eval_model(model, criterion, test_loader, test_data, show=False,
                                # save_as_filename=f'plots/confusion_matrix_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png'
                                )


    optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=.2, patience=5, threshold=1e-4, min_lr=1e-7, verbose=True)
    

    train_data = TensorDataset(torch.tensor(dataset['train']['embeddings']), torch.tensor(dataset['train']['labels']))
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)

    val_data = TensorDataset(torch.tensor(dataset['val']['embeddings']), torch.tensor(dataset['val']['labels']))
    val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True)
    
    

    losses, accuracies = train_model(model, criterion, optimizer, lr_scheduler, train_loader, val_loader, train_data, val_data, epochs)
    
    plot_training_metrics(losses, accuracies
                        #   , save_as_filename=f'plots/training_metrics_plot_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png'
                        )

    test_data = TensorDataset(torch.tensor(dataset['test']['embeddings']), torch.tensor(dataset['test']['labels']))
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
    loss, accuracy = eval_model(model, criterion, test_loader, test_data, show=False
                                # save_as_filename=f'plots/confusion_matrix_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png'
                                )

    # torch.save(model.state_dict(), f'models/linear_head.pth')
    # save_model(model, f'models/linear_head.safetensors')
    # load_model(model, f'models/linear_head.safetensors')
    # print(model)
    # dataset.push_to_hub(f'CabraVC/vector_dataset_stratified_ttv_split_{datetime.now().strftime("%Y-%m-%d_%H-%M")}', private=True)