svystun-taras's picture
created the updated web ui
0fdb130
raw
history blame
11.5 kB
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import pandas as pd
import torch
from datasets import Dataset, DatasetDict, load_dataset
from torch.utils.data import Dataset as TorchDataset
from . import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
from transformers import PreTrainedTokenizerBase
TokenizerOutput = Dict[str, List[int]]
SEEDS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
SAMPLE_SIZES = [2, 4, 8, 16, 32, 64]
def get_templated_dataset(
dataset: Optional[Dataset] = None,
candidate_labels: Optional[List[str]] = None,
reference_dataset: Optional[str] = None,
template: str = "This sentence is {}",
sample_size: int = 2,
text_column: str = "text",
label_column: str = "label",
multi_label: bool = False,
label_names_column: str = "label_text",
) -> Dataset:
"""Create templated examples for a reference dataset or reference labels.
If `candidate_labels` is supplied, use it for generating the templates.
Otherwise, use the labels loaded from `reference_dataset`.
If input Dataset is supplied, add the examples to it, otherwise create a new Dataset.
The input Dataset is assumed to have a text column with the name `text_column` and a
label column with the name `label_column`, which contains one-hot or multi-hot
encoded label sequences.
Args:
dataset (`Dataset`, *optional*): A Dataset to add templated examples to.
candidate_labels (`List[str]`, *optional*): The list of candidate
labels to be fed into the template to construct examples.
reference_dataset (`str`, *optional*): A dataset to take labels
from, if `candidate_labels` is not supplied.
template (`str`, *optional*, defaults to `"This sentence is {}"`): The template
used to turn each label into a synthetic training example. This template
must include a {} for the candidate label to be inserted into the template.
For example, the default template is "This sentence is {}." With the
candidate label "sports", this would produce an example
"This sentence is sports".
sample_size (`int`, *optional*, defaults to 2): The number of examples to make for
each candidate label.
text_column (`str`, *optional*, defaults to `"text"`): The name of the column
containing the text of the examples.
label_column (`str`, *optional*, defaults to `"label"`): The name of the column
in `dataset` containing the labels of the examples.
multi_label (`bool`, *optional*, defaults to `False`): Whether or not multiple
candidate labels can be true.
label_names_column (`str`, *optional*, defaults to "label_text"): The name of the
label column in the `reference_dataset`, to be used in case there is no ClassLabel
feature for the label column.
Returns:
`Dataset`: A copy of the input Dataset with templated examples added.
Raises:
`ValueError`: If the input Dataset is not empty and one or both of the
provided column names are missing.
"""
if dataset is None:
dataset = Dataset.from_dict({})
required_columns = {text_column, label_column}
column_names = set(dataset.column_names)
if column_names:
missing_columns = required_columns.difference(column_names)
if missing_columns:
raise ValueError(f"The following columns are missing from the input dataset: {missing_columns}.")
if bool(reference_dataset) == bool(candidate_labels):
raise ValueError(
"Must supply exactly one of `reference_dataset` or `candidate_labels` to `get_templated_dataset()`!"
)
if candidate_labels is None:
candidate_labels = get_candidate_labels(reference_dataset, label_names_column)
empty_label_vector = [0] * len(candidate_labels)
for label_id, label_name in enumerate(candidate_labels):
label_vector = empty_label_vector.copy()
label_vector[label_id] = 1
example = {
text_column: template.format(label_name),
label_column: label_vector if multi_label else label_id,
}
for _ in range(sample_size):
dataset = dataset.add_item(example)
return dataset
def get_candidate_labels(dataset_name: str, label_names_column: str = "label_text") -> List[str]:
dataset = load_dataset(dataset_name, split="train")
try:
# Extract ClassLabel feature from "label" column
label_features = dataset.features["label"]
# Label names to classify with
candidate_labels = label_features.names
except AttributeError:
# Some datasets on the Hugging Face Hub don't have a ClassLabel feature for the label column.
# In these cases, you should compute the candidate labels manually by first computing the id2label mapping.
# The column with the label names
label_names = dataset.unique(label_names_column)
# The column with the label IDs
label_ids = dataset.unique("label")
# Compute the id2label mapping and sort by label ID
id2label = sorted(zip(label_ids, label_names), key=lambda x: x[0])
candidate_labels = list(map(lambda x: x[1], id2label))
return candidate_labels
def create_samples(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
"""Samples a DataFrame to create an equal number of samples per class (when possible)."""
examples = []
for label in df["label"].unique():
subset = df.query(f"label == {label}")
if len(subset) > sample_size:
examples.append(subset.sample(sample_size, random_state=seed, replace=False))
else:
examples.append(subset)
return pd.concat(examples)
def sample_dataset(dataset: Dataset, label_column: str = "label", num_samples: int = 8, seed: int = 42) -> Dataset:
"""Samples a Dataset to create an equal number of samples per class (when possible)."""
shuffled_dataset = dataset.shuffle(seed=seed)
df = shuffled_dataset.to_pandas()
df = df.groupby(label_column)
# sample num_samples, or at least as much as possible
df = df.apply(lambda x: x.sample(min(num_samples, len(x)), random_state=seed))
df = df.reset_index(drop=True)
all_samples = Dataset.from_pandas(df, features=dataset.features)
return all_samples.shuffle(seed=seed)
def create_fewshot_splits(
dataset: Dataset,
sample_sizes: List[int],
add_data_augmentation: bool = False,
dataset_name: Optional[str] = None,
) -> DatasetDict:
"""Creates training splits from the dataset with an equal number of samples per class (when possible)."""
splits_ds = DatasetDict()
df = dataset.to_pandas()
if add_data_augmentation and dataset_name is None:
raise ValueError(
"If `add_data_augmentation` is True, must supply a `dataset_name` to create_fewshot_splits()!"
)
for sample_size in sample_sizes:
if add_data_augmentation:
augmented_df = get_templated_dataset(reference_dataset=dataset_name, sample_size=sample_size).to_pandas()
for idx, seed in enumerate(SEEDS):
split_df = create_samples(df, sample_size, seed)
if add_data_augmentation:
split_df = pd.concat([split_df, augmented_df], axis=0).sample(frac=1, random_state=seed)
splits_ds[f"train-{sample_size}-{idx}"] = Dataset.from_pandas(split_df, preserve_index=False)
return splits_ds
def create_samples_multilabel(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
"""Samples a DataFrame to create an equal number of samples per class (when possible)."""
examples = []
column_labels = [_col for _col in df.columns.tolist() if _col != "text"]
for label in column_labels:
subset = df.query(f"{label} == 1")
if len(subset) > sample_size:
examples.append(subset.sample(sample_size, random_state=seed, replace=False))
else:
examples.append(subset)
# Dropping duplicates for samples selected multiple times as they have multi labels
return pd.concat(examples).drop_duplicates()
def create_fewshot_splits_multilabel(dataset: Dataset, sample_sizes: List[int]) -> DatasetDict:
"""Creates training splits from the dataset with an equal number of samples per class (when possible)."""
splits_ds = DatasetDict()
df = dataset.to_pandas()
for sample_size in sample_sizes:
for idx, seed in enumerate(SEEDS):
split_df = create_samples_multilabel(df, sample_size, seed)
splits_ds[f"train-{sample_size}-{idx}"] = Dataset.from_pandas(split_df, preserve_index=False)
return splits_ds
class SetFitDataset(TorchDataset):
"""SetFitDataset
A dataset for training the differentiable head on text classification.
Args:
x (`List[str]`):
A list of input data as texts that will be fed into `SetFitModel`.
y (`Union[List[int], List[List[int]]]`):
A list of input data's labels. Can be a nested list for multi-label classification.
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer from `SetFitModel`'s body.
max_length (`int`, defaults to `32`):
The maximum token length a tokenizer can generate.
Will pad or truncate tokens when the number of tokens for a text is either smaller or larger than this value.
"""
def __init__(
self,
x: List[str],
y: Union[List[int], List[List[int]]],
tokenizer: "PreTrainedTokenizerBase",
max_length: int = 32,
) -> None:
assert len(x) == len(y)
self.x = x
self.y = y
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self) -> int:
return len(self.x)
def __getitem__(self, idx: int) -> Tuple[TokenizerOutput, Union[int, List[int]]]:
feature = self.tokenizer(
self.x[idx],
max_length=self.max_length,
padding="max_length",
truncation=True,
return_attention_mask="attention_mask" in self.tokenizer.model_input_names,
return_token_type_ids="token_type_ids" in self.tokenizer.model_input_names,
)
label = self.y[idx]
return feature, label
def collate_fn(self, batch):
features = {input_name: [] for input_name in self.tokenizer.model_input_names}
labels = []
for feature, label in batch:
features["input_ids"].append(feature["input_ids"])
if "attention_mask" in features:
features["attention_mask"].append(feature["attention_mask"])
if "token_type_ids" in features:
features["token_type_ids"].append(feature["token_type_ids"])
labels.append(label)
# convert to tensors
features = {k: torch.Tensor(v).int() for k, v in features.items()}
labels = torch.Tensor(labels)
labels = labels.long() if len(labels.size()) == 1 else labels.float()
return features, labels