Spaces:
Paused
Paused
import torch | |
from torch import nn | |
class SupConLoss(nn.Module): | |
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. | |
It also supports the unsupervised contrastive loss in SimCLR. | |
""" | |
def __init__(self, model, temperature=0.07, contrast_mode="all", base_temperature=0.07): | |
super(SupConLoss, self).__init__() | |
self.model = model | |
self.temperature = temperature | |
self.contrast_mode = contrast_mode | |
self.base_temperature = base_temperature | |
def forward(self, sentence_features, labels=None, mask=None): | |
"""Computes loss for model. | |
If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: | |
https://arxiv.org/pdf/2002.05709.pdf | |
Args: | |
features: hidden vector of shape [bsz, n_views, ...]. | |
labels: ground truth of shape [bsz]. | |
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j | |
has the same class as sample i. Can be asymmetric. | |
Returns: | |
A loss scalar. | |
""" | |
features = self.model(sentence_features[0])["sentence_embedding"] | |
# Normalize embeddings | |
features = torch.nn.functional.normalize(features, p=2, dim=1) | |
# Add n_views dimension | |
features = torch.unsqueeze(features, 1) | |
device = features.device | |
if len(features.shape) < 3: | |
raise ValueError("`features` needs to be [bsz, n_views, ...]," "at least 3 dimensions are required") | |
if len(features.shape) > 3: | |
features = features.view(features.shape[0], features.shape[1], -1) | |
batch_size = features.shape[0] | |
if labels is not None and mask is not None: | |
raise ValueError("Cannot define both `labels` and `mask`") | |
elif labels is None and mask is None: | |
mask = torch.eye(batch_size, dtype=torch.float32).to(device) | |
elif labels is not None: | |
labels = labels.contiguous().view(-1, 1) | |
if labels.shape[0] != batch_size: | |
raise ValueError("Num of labels does not match num of features") | |
mask = torch.eq(labels, labels.T).float().to(device) | |
else: | |
mask = mask.float().to(device) | |
contrast_count = features.shape[1] | |
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) | |
if self.contrast_mode == "one": | |
anchor_feature = features[:, 0] | |
anchor_count = 1 | |
elif self.contrast_mode == "all": | |
anchor_feature = contrast_feature | |
anchor_count = contrast_count | |
else: | |
raise ValueError("Unknown mode: {}".format(self.contrast_mode)) | |
# Compute logits | |
anchor_dot_contrast = torch.div(torch.matmul(anchor_feature, contrast_feature.T), self.temperature) | |
# For numerical stability | |
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) | |
logits = anchor_dot_contrast - logits_max.detach() | |
# Tile mask | |
mask = mask.repeat(anchor_count, contrast_count) | |
# Mask-out self-contrast cases | |
logits_mask = torch.scatter( | |
torch.ones_like(mask), | |
1, | |
torch.arange(batch_size * anchor_count).view(-1, 1).to(device), | |
0, | |
) | |
mask = mask * logits_mask | |
# Compute log_prob | |
exp_logits = torch.exp(logits) * logits_mask | |
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) | |
# Compute mean of log-likelihood over positive | |
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) | |
# Loss | |
loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos | |
loss = loss.view(anchor_count, batch_size).mean() | |
return loss | |