svystun-taras's picture
created the updated web ui
0fdb130
raw
history blame
12.7 kB
import copy
import os
import tempfile
import types
from dataclasses import dataclass, field
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple, Union
import torch
from huggingface_hub.utils import SoftTemporaryDirectory
from setfit.utils import set_docstring
from .. import logging
from ..modeling import SetFitModel
from .aspect_extractor import AspectExtractor
if TYPE_CHECKING:
from spacy.tokens import Doc
logger = logging.get_logger(__name__)
@dataclass
class SpanSetFitModel(SetFitModel):
spacy_model: str = "en_core_web_lg"
span_context: int = 0
attributes_to_save: Set[str] = field(
init=False,
repr=False,
default_factory=lambda: {"normalize_embeddings", "labels", "span_context", "spacy_model"},
)
def prepend_aspects(self, docs: List["Doc"], aspects_list: List[List[slice]]) -> List[str]:
for doc, aspects in zip(docs, aspects_list):
for aspect_slice in aspects:
aspect = doc[max(aspect_slice.start - self.span_context, 0) : aspect_slice.stop + self.span_context]
# TODO: Investigate performance difference of different formats
yield aspect.text + ":" + doc.text
def __call__(self, docs: List["Doc"], aspects_list: List[List[slice]]) -> List[bool]:
inputs_list = list(self.prepend_aspects(docs, aspects_list))
preds = self.predict(inputs_list, as_numpy=True)
iter_preds = iter(preds)
return [[next(iter_preds) for _ in aspects] for aspects in aspects_list]
def create_model_card(self, path: str, model_name: Optional[str] = None) -> None:
"""Creates and saves a model card for a SetFit model.
Args:
path (str): The path to save the model card to.
model_name (str, *optional*): The name of the model. Defaults to `SetFit Model`.
"""
if not os.path.exists(path):
os.makedirs(path)
# If the model_path is a folder that exists locally, i.e. when create_model_card is called
# via push_to_hub, and the path is in a temporary folder, then we only take the last two
# directories
model_path = Path(model_name)
if model_path.exists() and Path(tempfile.gettempdir()) in model_path.resolve().parents:
model_name = "/".join(model_path.parts[-2:])
is_aspect = isinstance(self, AspectModel)
aspect_model = "setfit-absa-aspect"
polarity_model = "setfit-absa-polarity"
if model_name is not None:
if is_aspect:
aspect_model = model_name
if model_name.endswith("-aspect"):
polarity_model = model_name[: -len("-aspect")] + "-polarity"
else:
polarity_model = model_name
if model_name.endswith("-polarity"):
aspect_model = model_name[: -len("-polarity")] + "-aspect"
# Only once:
if self.model_card_data.absa is None and self.model_card_data.model_name:
from spacy import __version__ as spacy_version
self.model_card_data.model_name = self.model_card_data.model_name.replace(
"SetFit", "SetFit Aspect Model" if is_aspect else "SetFit Polarity Model", 1
)
self.model_card_data.tags.insert(1, "absa")
self.model_card_data.version["spacy"] = spacy_version
self.model_card_data.absa = {
"is_absa": True,
"is_aspect": is_aspect,
"spacy_model": self.spacy_model,
"aspect_model": aspect_model,
"polarity_model": polarity_model,
}
if self.model_card_data.task_name is None:
self.model_card_data.task_name = "Aspect Based Sentiment Analysis (ABSA)"
self.model_card_data.inference = False
with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f:
f.write(self.generate_model_card())
docstring = SpanSetFitModel.from_pretrained.__doc__
cut_index = docstring.find("multi_target_strategy")
if cut_index != -1:
docstring = (
docstring[:cut_index]
+ """model_card_data (`SetFitModelCardData`, *optional*):
A `SetFitModelCardData` instance storing data such as model language, license, dataset name,
etc. to be used in the automatically generated model cards.
use_differentiable_head (`bool`, *optional*):
Whether to load SetFit using a differentiable (i.e., Torch) head instead of Logistic Regression.
normalize_embeddings (`bool`, *optional*):
Whether to apply normalization on the embeddings produced by the Sentence Transformer body.
span_context (`int`, defaults to `0`):
The number of words before and after the span candidate that should be prepended to the full sentence.
By default, 0 for Aspect models and 3 for Polarity models.
device (`Union[torch.device, str]`, *optional*):
The device on which to load the SetFit model, e.g. `"cuda:0"`, `"mps"` or `torch.device("cuda")`."""
)
SpanSetFitModel.from_pretrained = set_docstring(SpanSetFitModel.from_pretrained, docstring, cls=SpanSetFitModel)
class AspectModel(SpanSetFitModel):
def __call__(self, docs: List["Doc"], aspects_list: List[List[slice]]) -> List[bool]:
sentence_preds = super().__call__(docs, aspects_list)
return [
[aspect for aspect, pred in zip(aspects, preds) if pred == "aspect"]
for aspects, preds in zip(aspects_list, sentence_preds)
]
# The set_docstring magic has as a consequences that subclasses need to update the cls in the from_pretrained
# classmethod, otherwise the wrong instance will be instantiated.
AspectModel.from_pretrained = types.MethodType(AspectModel.from_pretrained.__func__, AspectModel)
@dataclass
class PolarityModel(SpanSetFitModel):
span_context: int = 3
PolarityModel.from_pretrained = types.MethodType(PolarityModel.from_pretrained.__func__, PolarityModel)
@dataclass
class AbsaModel:
aspect_extractor: AspectExtractor
aspect_model: AspectModel
polarity_model: PolarityModel
def predict(self, inputs: Union[str, List[str]]) -> List[Dict[str, Any]]:
is_str = isinstance(inputs, str)
inputs_list = [inputs] if is_str else inputs
docs, aspects_list = self.aspect_extractor(inputs_list)
if sum(aspects_list, []) == []:
return aspects_list
aspects_list = self.aspect_model(docs, aspects_list)
if sum(aspects_list, []) == []:
return aspects_list
polarity_list = self.polarity_model(docs, aspects_list)
outputs = []
for docs, aspects, polarities in zip(docs, aspects_list, polarity_list):
outputs.append(
[
{"span": docs[aspect_slice].text, "polarity": polarity}
for aspect_slice, polarity in zip(aspects, polarities)
]
)
return outputs if not is_str else outputs[0]
@property
def device(self) -> torch.device:
return self.aspect_model.device
def to(self, device: Union[str, torch.device]) -> "AbsaModel":
self.aspect_model.to(device)
self.polarity_model.to(device)
def __call__(self, inputs: Union[str, List[str]]) -> List[Dict[str, Any]]:
return self.predict(inputs)
def save_pretrained(
self,
save_directory: Union[str, Path],
polarity_save_directory: Optional[Union[str, Path]] = None,
push_to_hub: bool = False,
**kwargs,
) -> None:
if polarity_save_directory is None:
base_save_directory = Path(save_directory)
save_directory = base_save_directory.parent / (base_save_directory.name + "-aspect")
polarity_save_directory = base_save_directory.parent / (base_save_directory.name + "-polarity")
self.aspect_model.save_pretrained(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs)
self.polarity_model.save_pretrained(save_directory=polarity_save_directory, push_to_hub=push_to_hub, **kwargs)
@classmethod
def from_pretrained(
cls,
model_id: str,
polarity_model_id: Optional[str] = None,
spacy_model: Optional[str] = None,
span_contexts: Tuple[Optional[int], Optional[int]] = (None, None),
force_download: bool = None,
resume_download: bool = None,
proxies: Optional[Dict] = None,
token: Optional[Union[str, bool]] = None,
cache_dir: Optional[str] = None,
local_files_only: bool = None,
use_differentiable_head: bool = None,
normalize_embeddings: bool = None,
**model_kwargs,
) -> "AbsaModel":
revision = None
if len(model_id.split("@")) == 2:
model_id, revision = model_id.split("@")
if spacy_model:
model_kwargs["spacy_model"] = spacy_model
aspect_model = AspectModel.from_pretrained(
model_id,
span_context=span_contexts[0],
revision=revision,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
use_differentiable_head=use_differentiable_head,
normalize_embeddings=normalize_embeddings,
labels=["no aspect", "aspect"],
**model_kwargs,
)
if polarity_model_id:
model_id = polarity_model_id
revision = None
if len(model_id.split("@")) == 2:
model_id, revision = model_id.split("@")
# If model_card_data was provided, "separate" the instance between the Aspect
# and Polarity models.
model_card_data = model_kwargs.pop("model_card_data", None)
if model_card_data:
model_kwargs["model_card_data"] = copy.deepcopy(model_card_data)
polarity_model = PolarityModel.from_pretrained(
model_id,
span_context=span_contexts[1],
revision=revision,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
use_differentiable_head=use_differentiable_head,
normalize_embeddings=normalize_embeddings,
**model_kwargs,
)
if aspect_model.spacy_model != polarity_model.spacy_model:
logger.warning(
"The Aspect and Polarity models are configured to use different spaCy models:\n"
f"* {repr(aspect_model.spacy_model)} for the aspect model, and\n"
f"* {repr(polarity_model.spacy_model)} for the polarity model.\n"
f"This model will use {repr(aspect_model.spacy_model)}."
)
aspect_extractor = AspectExtractor(spacy_model=aspect_model.spacy_model)
return cls(aspect_extractor, aspect_model, polarity_model)
def push_to_hub(self, repo_id: str, polarity_repo_id: Optional[str] = None, **kwargs) -> None:
if "/" not in repo_id:
raise ValueError(
'`repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-absa-restaurant".'
)
if polarity_repo_id is not None and "/" not in polarity_repo_id:
raise ValueError(
'`polarity_repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-absa-restaurant".'
)
commit_message = kwargs.pop("commit_message", "Add SetFit ABSA model")
# Push the files to the repo in a single commit
with SoftTemporaryDirectory() as tmp_dir:
save_directory = Path(tmp_dir) / repo_id
polarity_save_directory = None if polarity_repo_id is None else Path(tmp_dir) / polarity_repo_id
self.save_pretrained(
save_directory=save_directory,
polarity_save_directory=polarity_save_directory,
push_to_hub=True,
commit_message=commit_message,
**kwargs,
)