svystun-taras's picture
created the updated web ui
0fdb130
raw
history blame
5.76 kB
import types
from contextlib import contextmanager
from dataclasses import dataclass, field
from time import monotonic_ns
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
from datasets import Dataset, DatasetDict, load_dataset
from sentence_transformers import losses
from transformers.utils import copy_func
from .data import create_fewshot_splits, create_fewshot_splits_multilabel
from .losses import SupConLoss
SEC_TO_NS_SCALE = 1000000000
DEV_DATASET_TO_METRIC = {
"sst2": "accuracy",
"imdb": "accuracy",
"subj": "accuracy",
"bbc-news": "accuracy",
"enron_spam": "accuracy",
"student-question-categories": "accuracy",
"TREC-QC": "accuracy",
"toxic_conversations": "matthews_correlation",
}
TEST_DATASET_TO_METRIC = {
"emotion": "accuracy",
"SentEval-CR": "accuracy",
"sst5": "accuracy",
"ag_news": "accuracy",
"enron_spam": "accuracy",
"amazon_counterfactual_en": "matthews_correlation",
}
MULTILINGUAL_DATASET_TO_METRIC = {
f"amazon_reviews_multi_{lang}": "mae" for lang in ["en", "de", "es", "fr", "ja", "zh"]
}
LOSS_NAME_TO_CLASS = {
"CosineSimilarityLoss": losses.CosineSimilarityLoss,
"ContrastiveLoss": losses.ContrastiveLoss,
"OnlineContrastiveLoss": losses.OnlineContrastiveLoss,
"BatchSemiHardTripletLoss": losses.BatchSemiHardTripletLoss,
"BatchAllTripletLoss": losses.BatchAllTripletLoss,
"BatchHardTripletLoss": losses.BatchHardTripletLoss,
"BatchHardSoftMarginTripletLoss": losses.BatchHardSoftMarginTripletLoss,
"SupConLoss": SupConLoss,
}
def default_hp_space_optuna(trial) -> Dict[str, Any]:
from transformers.integrations import is_optuna_available
assert is_optuna_available(), "This function needs Optuna installed: `pip install optuna`"
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"num_epochs": trial.suggest_int("num_epochs", 1, 5),
"num_iterations": trial.suggest_categorical("num_iterations", [5, 10, 20]),
"seed": trial.suggest_int("seed", 1, 40),
"batch_size": trial.suggest_categorical("batch_size", [4, 8, 16, 32, 64]),
}
def load_data_splits(
dataset: str, sample_sizes: List[int], add_data_augmentation: bool = False
) -> Tuple[DatasetDict, Dataset]:
"""Loads a dataset from the Hugging Face Hub and returns the test split and few-shot training splits."""
print(f"\n\n\n============== {dataset} ============")
# Load one of the SetFit training sets from the Hugging Face Hub
train_split = load_dataset(f"SetFit/{dataset}", split="train")
train_splits = create_fewshot_splits(train_split, sample_sizes, add_data_augmentation, f"SetFit/{dataset}")
test_split = load_dataset(f"SetFit/{dataset}", split="test")
print(f"Test set: {len(test_split)}")
return train_splits, test_split
def load_data_splits_multilabel(dataset: str, sample_sizes: List[int]) -> Tuple[DatasetDict, Dataset]:
"""Loads a dataset from the Hugging Face Hub and returns the test split and few-shot training splits."""
print(f"\n\n\n============== {dataset} ============")
# Load one of the SetFit training sets from the Hugging Face Hub
train_split = load_dataset(f"SetFit/{dataset}", "multilabel", split="train")
train_splits = create_fewshot_splits_multilabel(train_split, sample_sizes)
test_split = load_dataset(f"SetFit/{dataset}", "multilabel", split="test")
print(f"Test set: {len(test_split)}")
return train_splits, test_split
@dataclass
class Benchmark:
"""
Performs simple benchmarks of code portions (measures elapsed time).
Typical usage example:
bench = Benchmark()
with bench.track("Foo function"):
foo()
with bench.track("Bar function"):
bar()
bench.summary()
"""
out_path: Optional[str] = None
summary_msg: str = field(default_factory=str)
def print(self, msg: str) -> None:
"""
Prints to system out and optionally to specified out_path.
"""
print(msg)
if self.out_path is not None:
with open(self.out_path, "a+") as f:
f.write(msg + "\n")
@contextmanager
def track(self, step):
"""
Computes the elapsed time for given code context.
"""
start = monotonic_ns()
yield
ns = monotonic_ns() - start
msg = f"\n{'*' * 70}\n'{step}' took {ns / SEC_TO_NS_SCALE:.3f}s ({ns:,}ns)\n{'*' * 70}\n"
print(msg)
self.summary_msg += msg + "\n"
def summary(self) -> None:
"""
Prints summary of all benchmarks performed.
"""
self.print(f"\n{'#' * 30}\nBenchmark Summary:\n{'#' * 30}\n\n{self.summary_msg}")
class BestRun(NamedTuple):
"""
The best run found by a hyperparameter search (see [`~Trainer.hyperparameter_search`]).
Parameters:
run_id (`str`):
The id of the best run.
objective (`float`):
The objective that was obtained for this run.
hyperparameters (`Dict[str, Any]`):
The hyperparameters picked to get this run.
backend (`Any`):
The relevant internal object used for optimization. For optuna this is the `study` object.
"""
run_id: str
objective: float
hyperparameters: Dict[str, Any]
backend: Any = None
def set_docstring(method, docstring, cls=None):
copied_function = copy_func(method)
copied_function.__doc__ = docstring
return types.MethodType(copied_function, cls or method.__self__)