Spaces:
Sleeping
Sleeping
CaiRou-Huang
commited on
Commit
•
5d904b0
1
Parent(s):
448c16f
Upload 17 files
Browse files- configs/config.json +71 -0
- configs/configs_jp_extra.json +78 -0
- configs/paths.yml +8 -0
- text/__init__.py +32 -0
- text/chinese.py +199 -0
- text/chinese_bert.py +121 -0
- text/cleaner.py +31 -0
- text/cmudict.rep +0 -0
- text/cmudict_cache.pickle +3 -0
- text/english.py +495 -0
- text/english_bert_mock.py +63 -0
- text/japanese.py +585 -0
- text/japanese_bert.py +67 -0
- text/japanese_mora_list.py +232 -0
- text/opencpop-strict.txt +429 -0
- text/symbols.py +187 -0
- text/tone_sandhi.py +773 -0
configs/config.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name": "your_model_name",
|
3 |
+
"train": {
|
4 |
+
"log_interval": 200,
|
5 |
+
"eval_interval": 1000,
|
6 |
+
"seed": 42,
|
7 |
+
"epochs": 1000,
|
8 |
+
"learning_rate": 0.0002,
|
9 |
+
"betas": [0.8, 0.99],
|
10 |
+
"eps": 1e-9,
|
11 |
+
"batch_size": 4,
|
12 |
+
"bf16_run": true,
|
13 |
+
"lr_decay": 0.99995,
|
14 |
+
"segment_size": 16384,
|
15 |
+
"init_lr_ratio": 1,
|
16 |
+
"warmup_epochs": 0,
|
17 |
+
"c_mel": 45,
|
18 |
+
"c_kl": 1.0,
|
19 |
+
"skip_optimizer": false,
|
20 |
+
"freeze_ZH_bert": false,
|
21 |
+
"freeze_JP_bert": false,
|
22 |
+
"freeze_EN_bert": false,
|
23 |
+
"freeze_style": false
|
24 |
+
},
|
25 |
+
"data": {
|
26 |
+
"training_files": "Data/your_model_name/filelists/train.list",
|
27 |
+
"validation_files": "Data/your_model_name/filelists/val.list",
|
28 |
+
"max_wav_value": 32768.0,
|
29 |
+
"sampling_rate": 44100,
|
30 |
+
"filter_length": 2048,
|
31 |
+
"hop_length": 512,
|
32 |
+
"win_length": 2048,
|
33 |
+
"n_mel_channels": 128,
|
34 |
+
"mel_fmin": 0.0,
|
35 |
+
"mel_fmax": null,
|
36 |
+
"add_blank": true,
|
37 |
+
"n_speakers": 1,
|
38 |
+
"cleaned_text": true,
|
39 |
+
"num_styles": 1,
|
40 |
+
"style2id": {
|
41 |
+
"Neutral": 0
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"model": {
|
45 |
+
"use_spk_conditioned_encoder": true,
|
46 |
+
"use_noise_scaled_mas": true,
|
47 |
+
"use_mel_posterior_encoder": false,
|
48 |
+
"use_duration_discriminator": true,
|
49 |
+
"inter_channels": 192,
|
50 |
+
"hidden_channels": 192,
|
51 |
+
"filter_channels": 768,
|
52 |
+
"n_heads": 2,
|
53 |
+
"n_layers": 6,
|
54 |
+
"kernel_size": 3,
|
55 |
+
"p_dropout": 0.1,
|
56 |
+
"resblock": "1",
|
57 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
58 |
+
"resblock_dilation_sizes": [
|
59 |
+
[1, 3, 5],
|
60 |
+
[1, 3, 5],
|
61 |
+
[1, 3, 5]
|
62 |
+
],
|
63 |
+
"upsample_rates": [8, 8, 2, 2, 2],
|
64 |
+
"upsample_initial_channel": 512,
|
65 |
+
"upsample_kernel_sizes": [16, 16, 8, 2, 2],
|
66 |
+
"n_layers_q": 3,
|
67 |
+
"use_spectral_norm": false,
|
68 |
+
"gin_channels": 256
|
69 |
+
},
|
70 |
+
"version": "2.0.1"
|
71 |
+
}
|
configs/configs_jp_extra.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 42,
|
6 |
+
"epochs": 1000,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 24,
|
11 |
+
"bf16_run": false,
|
12 |
+
"fp16_run": false,
|
13 |
+
"lr_decay": 0.99996,
|
14 |
+
"segment_size": 16384,
|
15 |
+
"init_lr_ratio": 1,
|
16 |
+
"warmup_epochs": 0,
|
17 |
+
"c_mel": 45,
|
18 |
+
"c_kl": 1.0,
|
19 |
+
"c_commit": 100,
|
20 |
+
"skip_optimizer": true,
|
21 |
+
"freeze_ZH_bert": false,
|
22 |
+
"freeze_JP_bert": false,
|
23 |
+
"freeze_EN_bert": false,
|
24 |
+
"freeze_emo": false,
|
25 |
+
"freeze_style": false
|
26 |
+
},
|
27 |
+
"data": {
|
28 |
+
"use_jp_extra": true,
|
29 |
+
"training_files": "filelists/train.list",
|
30 |
+
"validation_files": "filelists/val.list",
|
31 |
+
"max_wav_value": 32768.0,
|
32 |
+
"sampling_rate": 44100,
|
33 |
+
"filter_length": 2048,
|
34 |
+
"hop_length": 512,
|
35 |
+
"win_length": 2048,
|
36 |
+
"n_mel_channels": 128,
|
37 |
+
"mel_fmin": 0.0,
|
38 |
+
"mel_fmax": null,
|
39 |
+
"add_blank": true,
|
40 |
+
"n_speakers": 512,
|
41 |
+
"cleaned_text": true
|
42 |
+
},
|
43 |
+
"model": {
|
44 |
+
"use_spk_conditioned_encoder": true,
|
45 |
+
"use_noise_scaled_mas": true,
|
46 |
+
"use_mel_posterior_encoder": false,
|
47 |
+
"use_duration_discriminator": false,
|
48 |
+
"use_wavlm_discriminator": true,
|
49 |
+
"inter_channels": 192,
|
50 |
+
"hidden_channels": 192,
|
51 |
+
"filter_channels": 768,
|
52 |
+
"n_heads": 2,
|
53 |
+
"n_layers": 6,
|
54 |
+
"kernel_size": 3,
|
55 |
+
"p_dropout": 0.1,
|
56 |
+
"resblock": "1",
|
57 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
58 |
+
"resblock_dilation_sizes": [
|
59 |
+
[1, 3, 5],
|
60 |
+
[1, 3, 5],
|
61 |
+
[1, 3, 5]
|
62 |
+
],
|
63 |
+
"upsample_rates": [8, 8, 2, 2, 2],
|
64 |
+
"upsample_initial_channel": 512,
|
65 |
+
"upsample_kernel_sizes": [16, 16, 8, 2, 2],
|
66 |
+
"n_layers_q": 3,
|
67 |
+
"use_spectral_norm": false,
|
68 |
+
"gin_channels": 512,
|
69 |
+
"slm": {
|
70 |
+
"model": "./slm/wavlm-base-plus",
|
71 |
+
"sr": 16000,
|
72 |
+
"hidden": 768,
|
73 |
+
"nlayers": 13,
|
74 |
+
"initial_channel": 64
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"version": "2.0.1-JP-Extra"
|
78 |
+
}
|
configs/paths.yml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Root directory of the training dataset.
|
2 |
+
# The training dataset of {model_name} should be placed in {dataset_root}/{model_name}.
|
3 |
+
dataset_root: Data
|
4 |
+
|
5 |
+
# Root directory of the model assets (for inference).
|
6 |
+
# In training, the model assets will be saved to {assets_root}/{model_name},
|
7 |
+
# and in inference, we load all the models from {assets_root}.
|
8 |
+
assets_root: model_assets
|
text/__init__.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text.symbols import *
|
2 |
+
|
3 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
4 |
+
|
5 |
+
|
6 |
+
def cleaned_text_to_sequence(cleaned_text, tones, language):
|
7 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
8 |
+
Args:
|
9 |
+
text: string to convert to a sequence
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
"""
|
13 |
+
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
14 |
+
tone_start = language_tone_start_map[language]
|
15 |
+
tones = [i + tone_start for i in tones]
|
16 |
+
lang_id = language_id_map[language]
|
17 |
+
lang_ids = [lang_id for i in phones]
|
18 |
+
return phones, tones, lang_ids
|
19 |
+
|
20 |
+
|
21 |
+
def get_bert(
|
22 |
+
norm_text, word2ph, language, device, assist_text=None, assist_text_weight=0.7
|
23 |
+
):
|
24 |
+
from .chinese_bert import get_bert_feature as zh_bert
|
25 |
+
from .english_bert_mock import get_bert_feature as en_bert
|
26 |
+
from .japanese_bert import get_bert_feature as jp_bert
|
27 |
+
|
28 |
+
lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert}
|
29 |
+
bert = lang_bert_func_map[language](
|
30 |
+
norm_text, word2ph, device, assist_text, assist_text_weight
|
31 |
+
)
|
32 |
+
return bert
|
text/chinese.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import cn2an
|
5 |
+
from pypinyin import lazy_pinyin, Style
|
6 |
+
|
7 |
+
from text.symbols import punctuation
|
8 |
+
from text.tone_sandhi import ToneSandhi
|
9 |
+
|
10 |
+
current_file_path = os.path.dirname(__file__)
|
11 |
+
pinyin_to_symbol_map = {
|
12 |
+
line.split("\t")[0]: line.strip().split("\t")[1]
|
13 |
+
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
14 |
+
}
|
15 |
+
|
16 |
+
import jieba.posseg as psg
|
17 |
+
|
18 |
+
|
19 |
+
rep_map = {
|
20 |
+
":": ",",
|
21 |
+
";": ",",
|
22 |
+
",": ",",
|
23 |
+
"。": ".",
|
24 |
+
"!": "!",
|
25 |
+
"?": "?",
|
26 |
+
"\n": ".",
|
27 |
+
"·": ",",
|
28 |
+
"、": ",",
|
29 |
+
"...": "…",
|
30 |
+
"$": ".",
|
31 |
+
"“": "'",
|
32 |
+
"”": "'",
|
33 |
+
'"': "'",
|
34 |
+
"‘": "'",
|
35 |
+
"’": "'",
|
36 |
+
"(": "'",
|
37 |
+
")": "'",
|
38 |
+
"(": "'",
|
39 |
+
")": "'",
|
40 |
+
"《": "'",
|
41 |
+
"》": "'",
|
42 |
+
"【": "'",
|
43 |
+
"】": "'",
|
44 |
+
"[": "'",
|
45 |
+
"]": "'",
|
46 |
+
"—": "-",
|
47 |
+
"~": "-",
|
48 |
+
"~": "-",
|
49 |
+
"「": "'",
|
50 |
+
"」": "'",
|
51 |
+
}
|
52 |
+
|
53 |
+
tone_modifier = ToneSandhi()
|
54 |
+
|
55 |
+
|
56 |
+
def replace_punctuation(text):
|
57 |
+
text = text.replace("嗯", "恩").replace("呣", "母")
|
58 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
59 |
+
|
60 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
61 |
+
|
62 |
+
replaced_text = re.sub(
|
63 |
+
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
64 |
+
)
|
65 |
+
|
66 |
+
return replaced_text
|
67 |
+
|
68 |
+
|
69 |
+
def g2p(text):
|
70 |
+
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
71 |
+
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
72 |
+
phones, tones, word2ph = _g2p(sentences)
|
73 |
+
assert sum(word2ph) == len(phones)
|
74 |
+
assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
|
75 |
+
phones = ["_"] + phones + ["_"]
|
76 |
+
tones = [0] + tones + [0]
|
77 |
+
word2ph = [1] + word2ph + [1]
|
78 |
+
return phones, tones, word2ph
|
79 |
+
|
80 |
+
|
81 |
+
def _get_initials_finals(word):
|
82 |
+
initials = []
|
83 |
+
finals = []
|
84 |
+
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
85 |
+
orig_finals = lazy_pinyin(
|
86 |
+
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
87 |
+
)
|
88 |
+
for c, v in zip(orig_initials, orig_finals):
|
89 |
+
initials.append(c)
|
90 |
+
finals.append(v)
|
91 |
+
return initials, finals
|
92 |
+
|
93 |
+
|
94 |
+
def _g2p(segments):
|
95 |
+
phones_list = []
|
96 |
+
tones_list = []
|
97 |
+
word2ph = []
|
98 |
+
for seg in segments:
|
99 |
+
# Replace all English words in the sentence
|
100 |
+
seg = re.sub("[a-zA-Z]+", "", seg)
|
101 |
+
seg_cut = psg.lcut(seg)
|
102 |
+
initials = []
|
103 |
+
finals = []
|
104 |
+
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
105 |
+
for word, pos in seg_cut:
|
106 |
+
if pos == "eng":
|
107 |
+
continue
|
108 |
+
sub_initials, sub_finals = _get_initials_finals(word)
|
109 |
+
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
110 |
+
initials.append(sub_initials)
|
111 |
+
finals.append(sub_finals)
|
112 |
+
|
113 |
+
# assert len(sub_initials) == len(sub_finals) == len(word)
|
114 |
+
initials = sum(initials, [])
|
115 |
+
finals = sum(finals, [])
|
116 |
+
#
|
117 |
+
for c, v in zip(initials, finals):
|
118 |
+
raw_pinyin = c + v
|
119 |
+
# NOTE: post process for pypinyin outputs
|
120 |
+
# we discriminate i, ii and iii
|
121 |
+
if c == v:
|
122 |
+
assert c in punctuation
|
123 |
+
phone = [c]
|
124 |
+
tone = "0"
|
125 |
+
word2ph.append(1)
|
126 |
+
else:
|
127 |
+
v_without_tone = v[:-1]
|
128 |
+
tone = v[-1]
|
129 |
+
|
130 |
+
pinyin = c + v_without_tone
|
131 |
+
assert tone in "12345"
|
132 |
+
|
133 |
+
if c:
|
134 |
+
# 多音节
|
135 |
+
v_rep_map = {
|
136 |
+
"uei": "ui",
|
137 |
+
"iou": "iu",
|
138 |
+
"uen": "un",
|
139 |
+
}
|
140 |
+
if v_without_tone in v_rep_map.keys():
|
141 |
+
pinyin = c + v_rep_map[v_without_tone]
|
142 |
+
else:
|
143 |
+
# 单音节
|
144 |
+
pinyin_rep_map = {
|
145 |
+
"ing": "ying",
|
146 |
+
"i": "yi",
|
147 |
+
"in": "yin",
|
148 |
+
"u": "wu",
|
149 |
+
}
|
150 |
+
if pinyin in pinyin_rep_map.keys():
|
151 |
+
pinyin = pinyin_rep_map[pinyin]
|
152 |
+
else:
|
153 |
+
single_rep_map = {
|
154 |
+
"v": "yu",
|
155 |
+
"e": "e",
|
156 |
+
"i": "y",
|
157 |
+
"u": "w",
|
158 |
+
}
|
159 |
+
if pinyin[0] in single_rep_map.keys():
|
160 |
+
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
161 |
+
|
162 |
+
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
163 |
+
phone = pinyin_to_symbol_map[pinyin].split(" ")
|
164 |
+
word2ph.append(len(phone))
|
165 |
+
|
166 |
+
phones_list += phone
|
167 |
+
tones_list += [int(tone)] * len(phone)
|
168 |
+
return phones_list, tones_list, word2ph
|
169 |
+
|
170 |
+
|
171 |
+
def text_normalize(text):
|
172 |
+
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
|
173 |
+
for number in numbers:
|
174 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
175 |
+
text = replace_punctuation(text)
|
176 |
+
return text
|
177 |
+
|
178 |
+
|
179 |
+
def get_bert_feature(text, word2ph):
|
180 |
+
from text import chinese_bert
|
181 |
+
|
182 |
+
return chinese_bert.get_bert_feature(text, word2ph)
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
from text.chinese_bert import get_bert_feature
|
187 |
+
|
188 |
+
text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
|
189 |
+
text = text_normalize(text)
|
190 |
+
print(text)
|
191 |
+
phones, tones, word2ph = g2p(text)
|
192 |
+
bert = get_bert_feature(text, word2ph)
|
193 |
+
|
194 |
+
print(phones, tones, word2ph, bert.shape)
|
195 |
+
|
196 |
+
|
197 |
+
# # 示例用法
|
198 |
+
# text = "这是一个示例文本:,你好!这是一个测试...."
|
199 |
+
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|
text/chinese_bert.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
5 |
+
|
6 |
+
from config import config
|
7 |
+
|
8 |
+
LOCAL_PATH = "./bert/chinese-roberta-wwm-ext-large"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
|
11 |
+
|
12 |
+
models = dict()
|
13 |
+
|
14 |
+
|
15 |
+
def get_bert_feature(
|
16 |
+
text,
|
17 |
+
word2ph,
|
18 |
+
device=config.bert_gen_config.device,
|
19 |
+
assist_text=None,
|
20 |
+
assist_text_weight=0.7,
|
21 |
+
):
|
22 |
+
if (
|
23 |
+
sys.platform == "darwin"
|
24 |
+
and torch.backends.mps.is_available()
|
25 |
+
and device == "cpu"
|
26 |
+
):
|
27 |
+
device = "mps"
|
28 |
+
if not device:
|
29 |
+
device = "cuda"
|
30 |
+
if device == "cuda" and not torch.cuda.is_available():
|
31 |
+
device = "cpu"
|
32 |
+
if device not in models.keys():
|
33 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
|
34 |
+
with torch.no_grad():
|
35 |
+
inputs = tokenizer(text, return_tensors="pt")
|
36 |
+
for i in inputs:
|
37 |
+
inputs[i] = inputs[i].to(device)
|
38 |
+
res = models[device](**inputs, output_hidden_states=True)
|
39 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
40 |
+
if assist_text:
|
41 |
+
style_inputs = tokenizer(assist_text, return_tensors="pt")
|
42 |
+
for i in style_inputs:
|
43 |
+
style_inputs[i] = style_inputs[i].to(device)
|
44 |
+
style_res = models[device](**style_inputs, output_hidden_states=True)
|
45 |
+
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
46 |
+
style_res_mean = style_res.mean(0)
|
47 |
+
assert len(word2ph) == len(text) + 2
|
48 |
+
word2phone = word2ph
|
49 |
+
phone_level_feature = []
|
50 |
+
for i in range(len(word2phone)):
|
51 |
+
if assist_text:
|
52 |
+
repeat_feature = (
|
53 |
+
res[i].repeat(word2phone[i], 1) * (1 - assist_text_weight)
|
54 |
+
+ style_res_mean.repeat(word2phone[i], 1) * assist_text_weight
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
58 |
+
phone_level_feature.append(repeat_feature)
|
59 |
+
|
60 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
61 |
+
|
62 |
+
return phone_level_feature.T
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
|
67 |
+
word2phone = [
|
68 |
+
1,
|
69 |
+
2,
|
70 |
+
1,
|
71 |
+
2,
|
72 |
+
2,
|
73 |
+
1,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
1,
|
77 |
+
2,
|
78 |
+
2,
|
79 |
+
1,
|
80 |
+
2,
|
81 |
+
2,
|
82 |
+
2,
|
83 |
+
2,
|
84 |
+
2,
|
85 |
+
1,
|
86 |
+
1,
|
87 |
+
2,
|
88 |
+
2,
|
89 |
+
1,
|
90 |
+
2,
|
91 |
+
2,
|
92 |
+
2,
|
93 |
+
2,
|
94 |
+
1,
|
95 |
+
2,
|
96 |
+
2,
|
97 |
+
2,
|
98 |
+
2,
|
99 |
+
2,
|
100 |
+
1,
|
101 |
+
2,
|
102 |
+
2,
|
103 |
+
2,
|
104 |
+
2,
|
105 |
+
1,
|
106 |
+
]
|
107 |
+
|
108 |
+
# 计算总帧数
|
109 |
+
total_frames = sum(word2phone)
|
110 |
+
print(word_level_feature.shape)
|
111 |
+
print(word2phone)
|
112 |
+
phone_level_feature = []
|
113 |
+
for i in range(len(word2phone)):
|
114 |
+
print(word_level_feature[i].shape)
|
115 |
+
|
116 |
+
# 对每个词重复word2phone[i]次
|
117 |
+
repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
|
118 |
+
phone_level_feature.append(repeat_feature)
|
119 |
+
|
120 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
121 |
+
print(phone_level_feature.shape) # torch.Size([36, 1024])
|
text/cleaner.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text import chinese, japanese, english, cleaned_text_to_sequence
|
2 |
+
|
3 |
+
|
4 |
+
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english}
|
5 |
+
|
6 |
+
|
7 |
+
def clean_text(text, language, use_jp_extra=True):
|
8 |
+
language_module = language_module_map[language]
|
9 |
+
norm_text = language_module.text_normalize(text)
|
10 |
+
if language == "JP":
|
11 |
+
phones, tones, word2ph = language_module.g2p(norm_text, use_jp_extra)
|
12 |
+
else:
|
13 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
14 |
+
return norm_text, phones, tones, word2ph
|
15 |
+
|
16 |
+
|
17 |
+
def clean_text_bert(text, language):
|
18 |
+
language_module = language_module_map[language]
|
19 |
+
norm_text = language_module.text_normalize(text)
|
20 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
21 |
+
bert = language_module.get_bert_feature(norm_text, word2ph)
|
22 |
+
return phones, tones, bert
|
23 |
+
|
24 |
+
|
25 |
+
def text_to_sequence(text, language):
|
26 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
27 |
+
return cleaned_text_to_sequence(phones, tones, language)
|
28 |
+
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
pass
|
text/cmudict.rep
ADDED
The diff for this file is too large to render.
See raw diff
|
|
text/cmudict_cache.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
|
3 |
+
size 6212655
|
text/english.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from g2p_en import G2p
|
5 |
+
from transformers import DebertaV2Tokenizer
|
6 |
+
|
7 |
+
from text import symbols
|
8 |
+
from text.symbols import punctuation
|
9 |
+
|
10 |
+
current_file_path = os.path.dirname(__file__)
|
11 |
+
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
12 |
+
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
|
13 |
+
_g2p = G2p()
|
14 |
+
LOCAL_PATH = "./bert/deberta-v3-large"
|
15 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained(LOCAL_PATH)
|
16 |
+
|
17 |
+
arpa = {
|
18 |
+
"AH0",
|
19 |
+
"S",
|
20 |
+
"AH1",
|
21 |
+
"EY2",
|
22 |
+
"AE2",
|
23 |
+
"EH0",
|
24 |
+
"OW2",
|
25 |
+
"UH0",
|
26 |
+
"NG",
|
27 |
+
"B",
|
28 |
+
"G",
|
29 |
+
"AY0",
|
30 |
+
"M",
|
31 |
+
"AA0",
|
32 |
+
"F",
|
33 |
+
"AO0",
|
34 |
+
"ER2",
|
35 |
+
"UH1",
|
36 |
+
"IY1",
|
37 |
+
"AH2",
|
38 |
+
"DH",
|
39 |
+
"IY0",
|
40 |
+
"EY1",
|
41 |
+
"IH0",
|
42 |
+
"K",
|
43 |
+
"N",
|
44 |
+
"W",
|
45 |
+
"IY2",
|
46 |
+
"T",
|
47 |
+
"AA1",
|
48 |
+
"ER1",
|
49 |
+
"EH2",
|
50 |
+
"OY0",
|
51 |
+
"UH2",
|
52 |
+
"UW1",
|
53 |
+
"Z",
|
54 |
+
"AW2",
|
55 |
+
"AW1",
|
56 |
+
"V",
|
57 |
+
"UW2",
|
58 |
+
"AA2",
|
59 |
+
"ER",
|
60 |
+
"AW0",
|
61 |
+
"UW0",
|
62 |
+
"R",
|
63 |
+
"OW1",
|
64 |
+
"EH1",
|
65 |
+
"ZH",
|
66 |
+
"AE0",
|
67 |
+
"IH2",
|
68 |
+
"IH",
|
69 |
+
"Y",
|
70 |
+
"JH",
|
71 |
+
"P",
|
72 |
+
"AY1",
|
73 |
+
"EY0",
|
74 |
+
"OY2",
|
75 |
+
"TH",
|
76 |
+
"HH",
|
77 |
+
"D",
|
78 |
+
"ER0",
|
79 |
+
"CH",
|
80 |
+
"AO1",
|
81 |
+
"AE1",
|
82 |
+
"AO2",
|
83 |
+
"OY1",
|
84 |
+
"AY2",
|
85 |
+
"IH1",
|
86 |
+
"OW0",
|
87 |
+
"L",
|
88 |
+
"SH",
|
89 |
+
}
|
90 |
+
|
91 |
+
|
92 |
+
def post_replace_ph(ph):
|
93 |
+
rep_map = {
|
94 |
+
":": ",",
|
95 |
+
";": ",",
|
96 |
+
",": ",",
|
97 |
+
"。": ".",
|
98 |
+
"!": "!",
|
99 |
+
"?": "?",
|
100 |
+
"\n": ".",
|
101 |
+
"·": ",",
|
102 |
+
"、": ",",
|
103 |
+
"…": "...",
|
104 |
+
"···": "...",
|
105 |
+
"・・・": "...",
|
106 |
+
"v": "V",
|
107 |
+
}
|
108 |
+
if ph in rep_map.keys():
|
109 |
+
ph = rep_map[ph]
|
110 |
+
if ph in symbols:
|
111 |
+
return ph
|
112 |
+
if ph not in symbols:
|
113 |
+
ph = "UNK"
|
114 |
+
return ph
|
115 |
+
|
116 |
+
|
117 |
+
rep_map = {
|
118 |
+
":": ",",
|
119 |
+
";": ",",
|
120 |
+
",": ",",
|
121 |
+
"。": ".",
|
122 |
+
"!": "!",
|
123 |
+
"?": "?",
|
124 |
+
"\n": ".",
|
125 |
+
".": ".",
|
126 |
+
"…": "...",
|
127 |
+
"···": "...",
|
128 |
+
"・・・": "...",
|
129 |
+
"·": ",",
|
130 |
+
"・": ",",
|
131 |
+
"、": ",",
|
132 |
+
"$": ".",
|
133 |
+
"“": "'",
|
134 |
+
"”": "'",
|
135 |
+
'"': "'",
|
136 |
+
"‘": "'",
|
137 |
+
"’": "'",
|
138 |
+
"(": "'",
|
139 |
+
")": "'",
|
140 |
+
"(": "'",
|
141 |
+
")": "'",
|
142 |
+
"《": "'",
|
143 |
+
"》": "'",
|
144 |
+
"【": "'",
|
145 |
+
"】": "'",
|
146 |
+
"[": "'",
|
147 |
+
"]": "'",
|
148 |
+
"—": "-",
|
149 |
+
"−": "-",
|
150 |
+
"~": "-",
|
151 |
+
"~": "-",
|
152 |
+
"「": "'",
|
153 |
+
"」": "'",
|
154 |
+
}
|
155 |
+
|
156 |
+
|
157 |
+
def replace_punctuation(text):
|
158 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
159 |
+
|
160 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
161 |
+
|
162 |
+
# replaced_text = re.sub(
|
163 |
+
# r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
|
164 |
+
# + "".join(punctuation)
|
165 |
+
# + r"]+",
|
166 |
+
# "",
|
167 |
+
# replaced_text,
|
168 |
+
# )
|
169 |
+
|
170 |
+
return replaced_text
|
171 |
+
|
172 |
+
|
173 |
+
def read_dict():
|
174 |
+
g2p_dict = {}
|
175 |
+
start_line = 49
|
176 |
+
with open(CMU_DICT_PATH) as f:
|
177 |
+
line = f.readline()
|
178 |
+
line_index = 1
|
179 |
+
while line:
|
180 |
+
if line_index >= start_line:
|
181 |
+
line = line.strip()
|
182 |
+
word_split = line.split(" ")
|
183 |
+
word = word_split[0]
|
184 |
+
|
185 |
+
syllable_split = word_split[1].split(" - ")
|
186 |
+
g2p_dict[word] = []
|
187 |
+
for syllable in syllable_split:
|
188 |
+
phone_split = syllable.split(" ")
|
189 |
+
g2p_dict[word].append(phone_split)
|
190 |
+
|
191 |
+
line_index = line_index + 1
|
192 |
+
line = f.readline()
|
193 |
+
|
194 |
+
return g2p_dict
|
195 |
+
|
196 |
+
|
197 |
+
def cache_dict(g2p_dict, file_path):
|
198 |
+
with open(file_path, "wb") as pickle_file:
|
199 |
+
pickle.dump(g2p_dict, pickle_file)
|
200 |
+
|
201 |
+
|
202 |
+
def get_dict():
|
203 |
+
if os.path.exists(CACHE_PATH):
|
204 |
+
with open(CACHE_PATH, "rb") as pickle_file:
|
205 |
+
g2p_dict = pickle.load(pickle_file)
|
206 |
+
else:
|
207 |
+
g2p_dict = read_dict()
|
208 |
+
cache_dict(g2p_dict, CACHE_PATH)
|
209 |
+
|
210 |
+
return g2p_dict
|
211 |
+
|
212 |
+
|
213 |
+
eng_dict = get_dict()
|
214 |
+
|
215 |
+
|
216 |
+
def refine_ph(phn):
|
217 |
+
tone = 0
|
218 |
+
if re.search(r"\d$", phn):
|
219 |
+
tone = int(phn[-1]) + 1
|
220 |
+
phn = phn[:-1]
|
221 |
+
else:
|
222 |
+
tone = 3
|
223 |
+
return phn.lower(), tone
|
224 |
+
|
225 |
+
|
226 |
+
def refine_syllables(syllables):
|
227 |
+
tones = []
|
228 |
+
phonemes = []
|
229 |
+
for phn_list in syllables:
|
230 |
+
for i in range(len(phn_list)):
|
231 |
+
phn = phn_list[i]
|
232 |
+
phn, tone = refine_ph(phn)
|
233 |
+
phonemes.append(phn)
|
234 |
+
tones.append(tone)
|
235 |
+
return phonemes, tones
|
236 |
+
|
237 |
+
|
238 |
+
import re
|
239 |
+
import inflect
|
240 |
+
|
241 |
+
_inflect = inflect.engine()
|
242 |
+
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
243 |
+
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
244 |
+
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
245 |
+
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
246 |
+
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
247 |
+
_number_re = re.compile(r"[0-9]+")
|
248 |
+
|
249 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
250 |
+
_abbreviations = [
|
251 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
252 |
+
for x in [
|
253 |
+
("mrs", "misess"),
|
254 |
+
("mr", "mister"),
|
255 |
+
("dr", "doctor"),
|
256 |
+
("st", "saint"),
|
257 |
+
("co", "company"),
|
258 |
+
("jr", "junior"),
|
259 |
+
("maj", "major"),
|
260 |
+
("gen", "general"),
|
261 |
+
("drs", "doctors"),
|
262 |
+
("rev", "reverend"),
|
263 |
+
("lt", "lieutenant"),
|
264 |
+
("hon", "honorable"),
|
265 |
+
("sgt", "sergeant"),
|
266 |
+
("capt", "captain"),
|
267 |
+
("esq", "esquire"),
|
268 |
+
("ltd", "limited"),
|
269 |
+
("col", "colonel"),
|
270 |
+
("ft", "fort"),
|
271 |
+
]
|
272 |
+
]
|
273 |
+
|
274 |
+
|
275 |
+
# List of (ipa, lazy ipa) pairs:
|
276 |
+
_lazy_ipa = [
|
277 |
+
(re.compile("%s" % x[0]), x[1])
|
278 |
+
for x in [
|
279 |
+
("r", "ɹ"),
|
280 |
+
("æ", "e"),
|
281 |
+
("ɑ", "a"),
|
282 |
+
("ɔ", "o"),
|
283 |
+
("ð", "z"),
|
284 |
+
("θ", "s"),
|
285 |
+
("ɛ", "e"),
|
286 |
+
("ɪ", "i"),
|
287 |
+
("ʊ", "u"),
|
288 |
+
("ʒ", "ʥ"),
|
289 |
+
("ʤ", "ʥ"),
|
290 |
+
("ˈ", "↓"),
|
291 |
+
]
|
292 |
+
]
|
293 |
+
|
294 |
+
# List of (ipa, lazy ipa2) pairs:
|
295 |
+
_lazy_ipa2 = [
|
296 |
+
(re.compile("%s" % x[0]), x[1])
|
297 |
+
for x in [
|
298 |
+
("r", "ɹ"),
|
299 |
+
("ð", "z"),
|
300 |
+
("θ", "s"),
|
301 |
+
("ʒ", "ʑ"),
|
302 |
+
("ʤ", "dʑ"),
|
303 |
+
("ˈ", "↓"),
|
304 |
+
]
|
305 |
+
]
|
306 |
+
|
307 |
+
# List of (ipa, ipa2) pairs
|
308 |
+
_ipa_to_ipa2 = [
|
309 |
+
(re.compile("%s" % x[0]), x[1]) for x in [("r", "ɹ"), ("ʤ", "dʒ"), ("ʧ", "tʃ")]
|
310 |
+
]
|
311 |
+
|
312 |
+
|
313 |
+
def _expand_dollars(m):
|
314 |
+
match = m.group(1)
|
315 |
+
parts = match.split(".")
|
316 |
+
if len(parts) > 2:
|
317 |
+
return match + " dollars" # Unexpected format
|
318 |
+
dollars = int(parts[0]) if parts[0] else 0
|
319 |
+
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
320 |
+
if dollars and cents:
|
321 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
322 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
323 |
+
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
|
324 |
+
elif dollars:
|
325 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
326 |
+
return "%s %s" % (dollars, dollar_unit)
|
327 |
+
elif cents:
|
328 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
329 |
+
return "%s %s" % (cents, cent_unit)
|
330 |
+
else:
|
331 |
+
return "zero dollars"
|
332 |
+
|
333 |
+
|
334 |
+
def _remove_commas(m):
|
335 |
+
return m.group(1).replace(",", "")
|
336 |
+
|
337 |
+
|
338 |
+
def _expand_ordinal(m):
|
339 |
+
return _inflect.number_to_words(m.group(0))
|
340 |
+
|
341 |
+
|
342 |
+
def _expand_number(m):
|
343 |
+
num = int(m.group(0))
|
344 |
+
if num > 1000 and num < 3000:
|
345 |
+
if num == 2000:
|
346 |
+
return "two thousand"
|
347 |
+
elif num > 2000 and num < 2010:
|
348 |
+
return "two thousand " + _inflect.number_to_words(num % 100)
|
349 |
+
elif num % 100 == 0:
|
350 |
+
return _inflect.number_to_words(num // 100) + " hundred"
|
351 |
+
else:
|
352 |
+
return _inflect.number_to_words(
|
353 |
+
num, andword="", zero="oh", group=2
|
354 |
+
).replace(", ", " ")
|
355 |
+
else:
|
356 |
+
return _inflect.number_to_words(num, andword="")
|
357 |
+
|
358 |
+
|
359 |
+
def _expand_decimal_point(m):
|
360 |
+
return m.group(1).replace(".", " point ")
|
361 |
+
|
362 |
+
|
363 |
+
def normalize_numbers(text):
|
364 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
365 |
+
text = re.sub(_pounds_re, r"\1 pounds", text)
|
366 |
+
text = re.sub(_dollars_re, _expand_dollars, text)
|
367 |
+
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
368 |
+
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
369 |
+
text = re.sub(_number_re, _expand_number, text)
|
370 |
+
return text
|
371 |
+
|
372 |
+
|
373 |
+
def text_normalize(text):
|
374 |
+
text = normalize_numbers(text)
|
375 |
+
text = replace_punctuation(text)
|
376 |
+
text = re.sub(r"([,;.\?\!])([\w])", r"\1 \2", text)
|
377 |
+
return text
|
378 |
+
|
379 |
+
|
380 |
+
def distribute_phone(n_phone, n_word):
|
381 |
+
phones_per_word = [0] * n_word
|
382 |
+
for task in range(n_phone):
|
383 |
+
min_tasks = min(phones_per_word)
|
384 |
+
min_index = phones_per_word.index(min_tasks)
|
385 |
+
phones_per_word[min_index] += 1
|
386 |
+
return phones_per_word
|
387 |
+
|
388 |
+
|
389 |
+
def sep_text(text):
|
390 |
+
words = re.split(r"([,;.\?\!\s+])", text)
|
391 |
+
words = [word for word in words if word.strip() != ""]
|
392 |
+
return words
|
393 |
+
|
394 |
+
|
395 |
+
def text_to_words(text):
|
396 |
+
tokens = tokenizer.tokenize(text)
|
397 |
+
words = []
|
398 |
+
for idx, t in enumerate(tokens):
|
399 |
+
if t.startswith("▁"):
|
400 |
+
words.append([t[1:]])
|
401 |
+
else:
|
402 |
+
if t in punctuation:
|
403 |
+
if idx == len(tokens) - 1:
|
404 |
+
words.append([f"{t}"])
|
405 |
+
else:
|
406 |
+
if (
|
407 |
+
not tokens[idx + 1].startswith("▁")
|
408 |
+
and tokens[idx + 1] not in punctuation
|
409 |
+
):
|
410 |
+
if idx == 0:
|
411 |
+
words.append([])
|
412 |
+
words[-1].append(f"{t}")
|
413 |
+
else:
|
414 |
+
words.append([f"{t}"])
|
415 |
+
else:
|
416 |
+
if idx == 0:
|
417 |
+
words.append([])
|
418 |
+
words[-1].append(f"{t}")
|
419 |
+
return words
|
420 |
+
|
421 |
+
|
422 |
+
def g2p(text):
|
423 |
+
phones = []
|
424 |
+
tones = []
|
425 |
+
phone_len = []
|
426 |
+
# words = sep_text(text)
|
427 |
+
# tokens = [tokenizer.tokenize(i) for i in words]
|
428 |
+
words = text_to_words(text)
|
429 |
+
|
430 |
+
for word in words:
|
431 |
+
temp_phones, temp_tones = [], []
|
432 |
+
if len(word) > 1:
|
433 |
+
if "'" in word:
|
434 |
+
word = ["".join(word)]
|
435 |
+
for w in word:
|
436 |
+
if w in punctuation:
|
437 |
+
temp_phones.append(w)
|
438 |
+
temp_tones.append(0)
|
439 |
+
continue
|
440 |
+
if w.upper() in eng_dict:
|
441 |
+
phns, tns = refine_syllables(eng_dict[w.upper()])
|
442 |
+
temp_phones += [post_replace_ph(i) for i in phns]
|
443 |
+
temp_tones += tns
|
444 |
+
# w2ph.append(len(phns))
|
445 |
+
else:
|
446 |
+
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
447 |
+
phns = []
|
448 |
+
tns = []
|
449 |
+
for ph in phone_list:
|
450 |
+
if ph in arpa:
|
451 |
+
ph, tn = refine_ph(ph)
|
452 |
+
phns.append(ph)
|
453 |
+
tns.append(tn)
|
454 |
+
else:
|
455 |
+
phns.append(ph)
|
456 |
+
tns.append(0)
|
457 |
+
temp_phones += [post_replace_ph(i) for i in phns]
|
458 |
+
temp_tones += tns
|
459 |
+
phones += temp_phones
|
460 |
+
tones += temp_tones
|
461 |
+
phone_len.append(len(temp_phones))
|
462 |
+
# phones = [post_replace_ph(i) for i in phones]
|
463 |
+
|
464 |
+
word2ph = []
|
465 |
+
for token, pl in zip(words, phone_len):
|
466 |
+
word_len = len(token)
|
467 |
+
|
468 |
+
aaa = distribute_phone(pl, word_len)
|
469 |
+
word2ph += aaa
|
470 |
+
|
471 |
+
phones = ["_"] + phones + ["_"]
|
472 |
+
tones = [0] + tones + [0]
|
473 |
+
word2ph = [1] + word2ph + [1]
|
474 |
+
assert len(phones) == len(tones), text
|
475 |
+
assert len(phones) == sum(word2ph), text
|
476 |
+
|
477 |
+
return phones, tones, word2ph
|
478 |
+
|
479 |
+
|
480 |
+
def get_bert_feature(text, word2ph):
|
481 |
+
from text import english_bert_mock
|
482 |
+
|
483 |
+
return english_bert_mock.get_bert_feature(text, word2ph)
|
484 |
+
|
485 |
+
|
486 |
+
if __name__ == "__main__":
|
487 |
+
# print(get_dict())
|
488 |
+
# print(eng_word_to_phoneme("hello"))
|
489 |
+
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
490 |
+
# all_phones = set()
|
491 |
+
# for k, syllables in eng_dict.items():
|
492 |
+
# for group in syllables:
|
493 |
+
# for ph in group:
|
494 |
+
# all_phones.add(ph)
|
495 |
+
# print(all_phones)
|
text/english_bert_mock.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import DebertaV2Model, DebertaV2Tokenizer
|
5 |
+
|
6 |
+
from config import config
|
7 |
+
|
8 |
+
|
9 |
+
LOCAL_PATH = "./bert/deberta-v3-large"
|
10 |
+
|
11 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained(LOCAL_PATH)
|
12 |
+
|
13 |
+
models = dict()
|
14 |
+
|
15 |
+
|
16 |
+
def get_bert_feature(
|
17 |
+
text,
|
18 |
+
word2ph,
|
19 |
+
device=config.bert_gen_config.device,
|
20 |
+
assist_text=None,
|
21 |
+
assist_text_weight=0.7,
|
22 |
+
):
|
23 |
+
if (
|
24 |
+
sys.platform == "darwin"
|
25 |
+
and torch.backends.mps.is_available()
|
26 |
+
and device == "cpu"
|
27 |
+
):
|
28 |
+
device = "mps"
|
29 |
+
if not device:
|
30 |
+
device = "cuda"
|
31 |
+
if device == "cuda" and not torch.cuda.is_available():
|
32 |
+
device = "cpu"
|
33 |
+
if device not in models.keys():
|
34 |
+
models[device] = DebertaV2Model.from_pretrained(LOCAL_PATH).to(device)
|
35 |
+
with torch.no_grad():
|
36 |
+
inputs = tokenizer(text, return_tensors="pt")
|
37 |
+
for i in inputs:
|
38 |
+
inputs[i] = inputs[i].to(device)
|
39 |
+
res = models[device](**inputs, output_hidden_states=True)
|
40 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
41 |
+
if assist_text:
|
42 |
+
style_inputs = tokenizer(assist_text, return_tensors="pt")
|
43 |
+
for i in style_inputs:
|
44 |
+
style_inputs[i] = style_inputs[i].to(device)
|
45 |
+
style_res = models[device](**style_inputs, output_hidden_states=True)
|
46 |
+
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
47 |
+
style_res_mean = style_res.mean(0)
|
48 |
+
assert len(word2ph) == res.shape[0], (text, res.shape[0], len(word2ph))
|
49 |
+
word2phone = word2ph
|
50 |
+
phone_level_feature = []
|
51 |
+
for i in range(len(word2phone)):
|
52 |
+
if assist_text:
|
53 |
+
repeat_feature = (
|
54 |
+
res[i].repeat(word2phone[i], 1) * (1 - assist_text_weight)
|
55 |
+
+ style_res_mean.repeat(word2phone[i], 1) * assist_text_weight
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
59 |
+
phone_level_feature.append(repeat_feature)
|
60 |
+
|
61 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
62 |
+
|
63 |
+
return phone_level_feature.T
|
text/japanese.py
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convert Japanese text to phonemes which is
|
2 |
+
# compatible with Julius https://github.com/julius-speech/segmentation-kit
|
3 |
+
import re
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
import pyopenjtalk
|
7 |
+
from num2words import num2words
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
|
10 |
+
from common.log import logger
|
11 |
+
from text import punctuation
|
12 |
+
from text.japanese_mora_list import (
|
13 |
+
mora_kata_to_mora_phonemes,
|
14 |
+
mora_phonemes_to_mora_kata,
|
15 |
+
)
|
16 |
+
|
17 |
+
# 子音の集合
|
18 |
+
COSONANTS = set(
|
19 |
+
[
|
20 |
+
cosonant
|
21 |
+
for cosonant, _ in mora_kata_to_mora_phonemes.values()
|
22 |
+
if cosonant is not None
|
23 |
+
]
|
24 |
+
)
|
25 |
+
|
26 |
+
# 母音の集合、便宜上「ん」を含める
|
27 |
+
VOWELS = {"a", "i", "u", "e", "o", "N"}
|
28 |
+
|
29 |
+
|
30 |
+
# 正規化で記号を変換するための辞書
|
31 |
+
rep_map = {
|
32 |
+
":": ",",
|
33 |
+
";": ",",
|
34 |
+
",": ",",
|
35 |
+
"。": ".",
|
36 |
+
"!": "!",
|
37 |
+
"?": "?",
|
38 |
+
"\n": ".",
|
39 |
+
".": ".",
|
40 |
+
"…": "...",
|
41 |
+
"···": "...",
|
42 |
+
"・・・": "...",
|
43 |
+
"·": ",",
|
44 |
+
"・": ",",
|
45 |
+
"、": ",",
|
46 |
+
"$": ".",
|
47 |
+
"“": "'",
|
48 |
+
"”": "'",
|
49 |
+
'"': "'",
|
50 |
+
"‘": "'",
|
51 |
+
"’": "'",
|
52 |
+
"(": "'",
|
53 |
+
")": "'",
|
54 |
+
"(": "'",
|
55 |
+
")": "'",
|
56 |
+
"《": "'",
|
57 |
+
"》": "'",
|
58 |
+
"【": "'",
|
59 |
+
"】": "'",
|
60 |
+
"[": "'",
|
61 |
+
"]": "'",
|
62 |
+
"—": "-",
|
63 |
+
"−": "-",
|
64 |
+
# "~": "-", # これは長音記号「ー」として扱うよう変更
|
65 |
+
# "~": "-", # これも長音記号「ー」として扱うよう変更
|
66 |
+
"「": "'",
|
67 |
+
"」": "'",
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def text_normalize(text):
|
72 |
+
"""
|
73 |
+
日本語のテキストを正規化する。
|
74 |
+
結果は、ちょうど次の文字のみからなる:
|
75 |
+
- ひらがな
|
76 |
+
- カタカナ(全角長音記号「ー」が入る!)
|
77 |
+
- 漢字
|
78 |
+
- 半角アルファベット(大文字と小文字)
|
79 |
+
- ギリシャ文字
|
80 |
+
- `.` (句点`。`や`…`の一部や改行等)
|
81 |
+
- `,` (読点`、`や`:`等)
|
82 |
+
- `?` (疑問符`?`)
|
83 |
+
- `!` (感嘆符`!`)
|
84 |
+
- `'` (`「`や`」`等)
|
85 |
+
- `-` (`―`(ダッシュ、長音記号ではない)や`-`等)
|
86 |
+
|
87 |
+
注意点:
|
88 |
+
- 三点リーダー`…`は`...`に変換される(`なるほど…。` → `なるほど....`)
|
89 |
+
- 数字は漢字に変換される(`1,100円` → `千百円`、`52.34` → `五十二点三四`)
|
90 |
+
- 読点や疑問符等の位置・個数等は保持される(`??あ、、!!!` → `??あ,,!!!`)
|
91 |
+
"""
|
92 |
+
res = unicodedata.normalize("NFKC", text) # ここでアルファベットは半角になる
|
93 |
+
res = japanese_convert_numbers_to_words(res) # 「100円」→「百円」等
|
94 |
+
# 「~」と「~」も長音記号として扱う
|
95 |
+
res = res.replace("~", "ー")
|
96 |
+
res = res.replace("~", "ー")
|
97 |
+
|
98 |
+
res = replace_punctuation(res) # 句読点等正規化、読めない文字を削除
|
99 |
+
|
100 |
+
# 結合文字の濁点・半濁点を削除
|
101 |
+
# 通常の「ば」等はそのままのこされる、「あ゛」は上で「あ゙」になりここで「あ」になる
|
102 |
+
res = res.replace("\u3099", "") # 結合文字の濁点を削除、る゙ → る
|
103 |
+
res = res.replace("\u309A", "") # 結合文字の半濁点を削除、な゚ → な
|
104 |
+
return res
|
105 |
+
|
106 |
+
|
107 |
+
def replace_punctuation(text: str) -> str:
|
108 |
+
"""句読点等を「.」「,」「!」「?」「'」「-」に正規化し、OpenJTalkで読みが取得できるもののみ残す:
|
109 |
+
漢字・平仮名・カタカナ、アルファベット、ギリシャ文字
|
110 |
+
"""
|
111 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
112 |
+
|
113 |
+
# 句読点を辞書で置換
|
114 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
115 |
+
|
116 |
+
replaced_text = re.sub(
|
117 |
+
# ↓ ひらがな、カタカナ、漢字
|
118 |
+
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
|
119 |
+
# ↓ 半角アルファベット(大文字と小文字)
|
120 |
+
+ r"\u0041-\u005A\u0061-\u007A"
|
121 |
+
# ↓ 全角アルファベット(大文字と小文字)
|
122 |
+
+ r"\uFF21-\uFF3A\uFF41-\uFF5A"
|
123 |
+
# ↓ ギリシャ文字
|
124 |
+
+ r"\u0370-\u03FF\u1F00-\u1FFF"
|
125 |
+
# ↓ "!", "?", "…", ",", ".", "'", "-", 但し`…`はすでに`...`に変換されている
|
126 |
+
+ "".join(punctuation) + r"]+",
|
127 |
+
# 上述以外の文字を削除
|
128 |
+
"",
|
129 |
+
replaced_text,
|
130 |
+
)
|
131 |
+
|
132 |
+
return replaced_text
|
133 |
+
|
134 |
+
|
135 |
+
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
|
136 |
+
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
|
137 |
+
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
|
138 |
+
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
|
139 |
+
|
140 |
+
|
141 |
+
def japanese_convert_numbers_to_words(text: str) -> str:
|
142 |
+
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
|
143 |
+
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
|
144 |
+
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
|
145 |
+
return res
|
146 |
+
|
147 |
+
|
148 |
+
def g2p(
|
149 |
+
norm_text: str, use_jp_extra: bool = True
|
150 |
+
) -> tuple[list[str], list[int], list[int]]:
|
151 |
+
"""
|
152 |
+
他で使われるメインの関数。`text_normalize()`で正規化された`norm_text`を受け取り、
|
153 |
+
- phones: 音素のリスト(ただし`!`や`,`や`.`等punctuationが含まれうる)
|
154 |
+
- tones: アクセントのリスト、0(低)と1(高)からなり、phonesと同じ長さ
|
155 |
+
- word2ph: 元のテキストの各文字に音素が何個割り当てられるかを表すリスト
|
156 |
+
のタプルを返す。
|
157 |
+
ただし`phones`と`tones`の最初と終わりに`_`が入り、応じて`word2ph`の最初と最後に1が追加される。
|
158 |
+
use_jp_extra: Falseの場合、「ん」の音素を「N」ではなく「n」とする。
|
159 |
+
"""
|
160 |
+
# pyopenjtalkのフルコンテキストラベルを使ってアクセントを取り出すと、punctuationの位置が消えてしまい情報が失われてしまう:
|
161 |
+
# 「こんにちは、世界。」と「こんにちは!世界。」と「こんにちは!!!???世界……。」は全て同じになる。
|
162 |
+
# よって、まずpunctuation無しの音素とアクセントのリストを作り、
|
163 |
+
# それとは別にpyopenjtalk.run_frontend()で得られる音素リスト(こちらはpunctuationが保持される)を使い、
|
164 |
+
# アクセント割当をしなおすことによってpunctuationを含めた音素とアクセントのリストを作る。
|
165 |
+
|
166 |
+
# punctuationがすべて消えた、音素とアクセントのタプルのリスト(「ん」は「N」)
|
167 |
+
phone_tone_list_wo_punct = g2phone_tone_wo_punct(norm_text)
|
168 |
+
|
169 |
+
# sep_text: 単語単位の単語のリスト
|
170 |
+
# sep_kata: 単語単位の単語のカタカナ読みのリスト
|
171 |
+
sep_text, sep_kata = text2sep_kata(norm_text)
|
172 |
+
|
173 |
+
# sep_phonemes: 各単語ごとの音素のリストのリスト
|
174 |
+
sep_phonemes = handle_long([kata2phoneme_list(i) for i in sep_kata])
|
175 |
+
|
176 |
+
# phone_w_punct: sep_phonemesを結合した、punctuationを元のまま保持した音素列
|
177 |
+
phone_w_punct: list[str] = []
|
178 |
+
for i in sep_phonemes:
|
179 |
+
phone_w_punct += i
|
180 |
+
|
181 |
+
# punctuation無しのアクセント情報を使って、punctuationを含めたアクセント情報を作る
|
182 |
+
phone_tone_list = align_tones(phone_w_punct, phone_tone_list_wo_punct)
|
183 |
+
# logger.debug(f"phone_tone_list:\n{phone_tone_list}")
|
184 |
+
# word2phは厳密な解答は不可能なので(「今日」「眼鏡」等の熟字訓が存在)、
|
185 |
+
# Bert-VITS2では、単語単位の分割を使って、単語の文字ごとにだいたい均等に音素を分配する
|
186 |
+
|
187 |
+
# sep_textから、各単語を1文字1文字分割して、文字のリスト(のリスト)を作る
|
188 |
+
sep_tokenized: list[list[str]] = []
|
189 |
+
for i in sep_text:
|
190 |
+
if i not in punctuation:
|
191 |
+
sep_tokenized.append(
|
192 |
+
tokenizer.tokenize(i)
|
193 |
+
) # ここでおそらく`i`が文字単位に分割される
|
194 |
+
else:
|
195 |
+
sep_tokenized.append([i])
|
196 |
+
|
197 |
+
# 各単語について、音素の数と文字の数を比較して、均等っぽく分配する
|
198 |
+
word2ph = []
|
199 |
+
for token, phoneme in zip(sep_tokenized, sep_phonemes):
|
200 |
+
phone_len = len(phoneme)
|
201 |
+
word_len = len(token)
|
202 |
+
word2ph += distribute_phone(phone_len, word_len)
|
203 |
+
|
204 |
+
# 最初と最後に`_`記号を追加、アクセントは0(低)、word2phもそれに合わせて追加
|
205 |
+
phone_tone_list = [("_", 0)] + phone_tone_list + [("_", 0)]
|
206 |
+
word2ph = [1] + word2ph + [1]
|
207 |
+
|
208 |
+
phones = [phone for phone, _ in phone_tone_list]
|
209 |
+
tones = [tone for _, tone in phone_tone_list]
|
210 |
+
|
211 |
+
assert len(phones) == sum(word2ph), f"{len(phones)} != {sum(word2ph)}"
|
212 |
+
|
213 |
+
# use_jp_extraでない場合は「N」を「n」に変換
|
214 |
+
if not use_jp_extra:
|
215 |
+
phones = [phone if phone != "N" else "n" for phone in phones]
|
216 |
+
|
217 |
+
return phones, tones, word2ph
|
218 |
+
|
219 |
+
|
220 |
+
def g2kata_tone(norm_text: str) -> list[tuple[str, int]]:
|
221 |
+
phones, tones, _ = g2p(norm_text, use_jp_extra=True)
|
222 |
+
return phone_tone2kata_tone(list(zip(phones, tones)))
|
223 |
+
|
224 |
+
|
225 |
+
def phone_tone2kata_tone(phone_tone: list[tuple[str, int]]) -> list[tuple[str, int]]:
|
226 |
+
"""phone_toneをのphone部分をカタカナに変換する。ただし最初と最後の("_", 0)は無視"""
|
227 |
+
phone_tone = phone_tone[1:] # 最初の("_", 0)を無視
|
228 |
+
phones = [phone for phone, _ in phone_tone]
|
229 |
+
tones = [tone for _, tone in phone_tone]
|
230 |
+
result: list[tuple[str, int]] = []
|
231 |
+
current_mora = ""
|
232 |
+
for phone, next_phone, tone, next_tone in zip(phones, phones[1:], tones, tones[1:]):
|
233 |
+
# zipの関係で最後の("_", 0)は無視されている
|
234 |
+
if phone in punctuation:
|
235 |
+
result.append((phone, tone))
|
236 |
+
continue
|
237 |
+
if phone in COSONANTS: # n以外の子音の場合
|
238 |
+
assert current_mora == "", f"Unexpected {phone} after {current_mora}"
|
239 |
+
assert tone == next_tone, f"Unexpected {phone} tone {tone} != {next_tone}"
|
240 |
+
current_mora = phone
|
241 |
+
else:
|
242 |
+
# phoneが母音もしくは「N」
|
243 |
+
current_mora += phone
|
244 |
+
result.append((mora_phonemes_to_mora_kata[current_mora], tone))
|
245 |
+
current_mora = ""
|
246 |
+
return result
|
247 |
+
|
248 |
+
|
249 |
+
def kata_tone2phone_tone(kata_tone: list[tuple[str, int]]) -> list[tuple[str, int]]:
|
250 |
+
"""`phone_tone2kata_tone()`の逆。"""
|
251 |
+
result: list[tuple[str, int]] = [("_", 0)]
|
252 |
+
for mora, tone in kata_tone:
|
253 |
+
if mora in punctuation:
|
254 |
+
result.append((mora, tone))
|
255 |
+
else:
|
256 |
+
cosonant, vowel = mora_kata_to_mora_phonemes[mora]
|
257 |
+
if cosonant is None:
|
258 |
+
result.append((vowel, tone))
|
259 |
+
else:
|
260 |
+
result.append((cosonant, tone))
|
261 |
+
result.append((vowel, tone))
|
262 |
+
result.append(("_", 0))
|
263 |
+
return result
|
264 |
+
|
265 |
+
|
266 |
+
def g2phone_tone_wo_punct(text: str) -> list[tuple[str, int]]:
|
267 |
+
"""
|
268 |
+
テキストに対して、音素とアクセント(0か1)のペアのリストを返す。
|
269 |
+
ただし「!」「.」「?」等の非音素記号(punctuation)は全て消える(ポーズ記号も残さない)。
|
270 |
+
非音素記号を含める処理は`align_tones()`で行われる。
|
271 |
+
また「っ」は「q」に、「ん」は「N」に変換される。
|
272 |
+
例: "こんにちは、世界ー。。元気?!" →
|
273 |
+
[('k', 0), ('o', 0), ('N', 1), ('n', 1), ('i', 1), ('ch', 1), ('i', 1), ('w', 1), ('a', 1), ('s', 1), ('e', 1), ('k', 0), ('a', 0), ('i', 0), ('i', 0), ('g', 1), ('e', 1), ('N', 0), ('k', 0), ('i', 0)]
|
274 |
+
"""
|
275 |
+
prosodies = pyopenjtalk_g2p_prosody(text, drop_unvoiced_vowels=True)
|
276 |
+
# logger.debug(f"prosodies: {prosodies}")
|
277 |
+
result: list[tuple[str, int]] = []
|
278 |
+
current_phrase: list[tuple[str, int]] = []
|
279 |
+
current_tone = 0
|
280 |
+
for i, letter in enumerate(prosodies):
|
281 |
+
# 特殊記号の処理
|
282 |
+
|
283 |
+
# 文頭記号、無視する
|
284 |
+
if letter == "^":
|
285 |
+
assert i == 0, "Unexpected ^"
|
286 |
+
# アクセント句の終わりに来る記号
|
287 |
+
elif letter in ("$", "?", "_", "#"):
|
288 |
+
# 保持しているフレーズを、アクセント数値を0-1に修正し結果に追加
|
289 |
+
result.extend(fix_phone_tone(current_phrase))
|
290 |
+
# 末尾に来る終了記号、無視(文中の疑問文は`_`になる)
|
291 |
+
if letter in ("$", "?"):
|
292 |
+
assert i == len(prosodies) - 1, f"Unexpected {letter}"
|
293 |
+
# あとは"_"(ポーズ)と"#"(アクセント句の境界)のみ
|
294 |
+
# これらは残さず、次のアクセント句に備える。
|
295 |
+
current_phrase = []
|
296 |
+
# 0を基準点にしてそこから上昇・下降する(負の場合は上の`fix_phone_tone`で直る)
|
297 |
+
current_tone = 0
|
298 |
+
# アクセント上昇記号
|
299 |
+
elif letter == "[":
|
300 |
+
current_tone = current_tone + 1
|
301 |
+
# アクセント下降記号
|
302 |
+
elif letter == "]":
|
303 |
+
current_tone = current_tone - 1
|
304 |
+
# それ以外は通常の音素
|
305 |
+
else:
|
306 |
+
if letter == "cl": # 「っ」の処理
|
307 |
+
letter = "q"
|
308 |
+
# elif letter == "N": # 「ん」の処理
|
309 |
+
# letter = "n"
|
310 |
+
current_phrase.append((letter, current_tone))
|
311 |
+
return result
|
312 |
+
|
313 |
+
|
314 |
+
def text2sep_kata(norm_text: str) -> tuple[list[str], list[str]]:
|
315 |
+
"""
|
316 |
+
`text_normalize`で正規化済みの`norm_text`を受け取り、それを単語分割し、
|
317 |
+
分割された単語リストとその読み(カタカナor記号1文字)のリストのタプルを返す。
|
318 |
+
単語分割結果は、`g2p()`の`word2ph`で1文字あたりに割り振る音素記号の数を決めるために使う。
|
319 |
+
例:
|
320 |
+
`私はそう思う!って感じ?` →
|
321 |
+
["私", "は", "そう", "思う", "!", "って", "感じ", "?"], ["ワタシ", "ワ", "ソー", "オモウ", "!", "ッテ", "カンジ", "?"]
|
322 |
+
"""
|
323 |
+
# parsed: OpenJTalkの解析結果
|
324 |
+
parsed = pyopenjtalk.run_frontend(norm_text)
|
325 |
+
sep_text: list[str] = []
|
326 |
+
sep_kata: list[str] = []
|
327 |
+
for parts in parsed:
|
328 |
+
# word: 実際の単語の文字列
|
329 |
+
# yomi: その読み、但し無声化サインの`’`は除去
|
330 |
+
word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace(
|
331 |
+
"’", ""
|
332 |
+
)
|
333 |
+
"""
|
334 |
+
ここで`yomi`の取りうる値は以下の通りのはず。
|
335 |
+
- `word`が通常単語 → 通常の読み(カタカナ)
|
336 |
+
(カタカナからなり、長音記号も含みうる、`アー` 等)
|
337 |
+
- `word`が`ー` から始まる → `ーラー` や `ーーー` など
|
338 |
+
- `word`が句読点や空白等 → `、`
|
339 |
+
- `word`が`?` → `?`(全角になる)
|
340 |
+
他にも`word`が読めないキリル文字アラビア文字等が来ると`、`になるが、正規化でこの場合は起きないはず。
|
341 |
+
また元のコードでは`yomi`が空白の場合の処理があったが、これは起きないはず。
|
342 |
+
処理すべきは`yomi`が`、`の場合のみのはず。
|
343 |
+
"""
|
344 |
+
assert yomi != "", f"Empty yomi: {word}"
|
345 |
+
if yomi == "、":
|
346 |
+
# wordは正規化されているので、`.`, `,`, `!`, `'`, `-`, `--` のいずれか
|
347 |
+
if word not in (
|
348 |
+
".",
|
349 |
+
",",
|
350 |
+
"!",
|
351 |
+
"'",
|
352 |
+
"-",
|
353 |
+
"--",
|
354 |
+
):
|
355 |
+
# ここはpyopenjtalkが読めない文字等のときに起こる
|
356 |
+
raise ValueError(f"Cannot read: {word} in:\n{norm_text}")
|
357 |
+
# yomiは元の記号のままに変更
|
358 |
+
yomi = word
|
359 |
+
elif yomi == "?":
|
360 |
+
assert word == "?", f"yomi `?` comes from: {word}"
|
361 |
+
yomi = "?"
|
362 |
+
sep_text.append(word)
|
363 |
+
sep_kata.append(yomi)
|
364 |
+
return sep_text, sep_kata
|
365 |
+
|
366 |
+
|
367 |
+
# ESPnetの実装から引用、変更点無し。「ん」は「N」なことに注意。
|
368 |
+
# https://github.com/espnet/espnet/blob/master/espnet2/text/phoneme_tokenizer.py
|
369 |
+
def pyopenjtalk_g2p_prosody(text: str, drop_unvoiced_vowels: bool = True) -> list[str]:
|
370 |
+
"""Extract phoneme + prosoody symbol sequence from input full-context labels.
|
371 |
+
|
372 |
+
The algorithm is based on `Prosodic features control by symbols as input of
|
373 |
+
sequence-to-sequence acoustic modeling for neural TTS`_ with some r9y9's tweaks.
|
374 |
+
|
375 |
+
Args:
|
376 |
+
text (str): Input text.
|
377 |
+
drop_unvoiced_vowels (bool): whether to drop unvoiced vowels.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
List[str]: List of phoneme + prosody symbols.
|
381 |
+
|
382 |
+
Examples:
|
383 |
+
>>> from espnet2.text.phoneme_tokenizer import pyopenjtalk_g2p_prosody
|
384 |
+
>>> pyopenjtalk_g2p_prosody("こんにちは。")
|
385 |
+
['^', 'k', 'o', '[', 'N', 'n', 'i', 'ch', 'i', 'w', 'a', '$']
|
386 |
+
|
387 |
+
.. _`Prosodic features control by symbols as input of sequence-to-sequence acoustic
|
388 |
+
modeling for neural TTS`: https://doi.org/10.1587/transinf.2020EDP7104
|
389 |
+
|
390 |
+
"""
|
391 |
+
labels = pyopenjtalk.make_label(pyopenjtalk.run_frontend(text))
|
392 |
+
N = len(labels)
|
393 |
+
|
394 |
+
phones = []
|
395 |
+
for n in range(N):
|
396 |
+
lab_curr = labels[n]
|
397 |
+
|
398 |
+
# current phoneme
|
399 |
+
p3 = re.search(r"\-(.*?)\+", lab_curr).group(1)
|
400 |
+
# deal unvoiced vowels as normal vowels
|
401 |
+
if drop_unvoiced_vowels and p3 in "AEIOU":
|
402 |
+
p3 = p3.lower()
|
403 |
+
|
404 |
+
# deal with sil at the beginning and the end of text
|
405 |
+
if p3 == "sil":
|
406 |
+
assert n == 0 or n == N - 1
|
407 |
+
if n == 0:
|
408 |
+
phones.append("^")
|
409 |
+
elif n == N - 1:
|
410 |
+
# check question form or not
|
411 |
+
e3 = _numeric_feature_by_regex(r"!(\d+)_", lab_curr)
|
412 |
+
if e3 == 0:
|
413 |
+
phones.append("$")
|
414 |
+
elif e3 == 1:
|
415 |
+
phones.append("?")
|
416 |
+
continue
|
417 |
+
elif p3 == "pau":
|
418 |
+
phones.append("_")
|
419 |
+
continue
|
420 |
+
else:
|
421 |
+
phones.append(p3)
|
422 |
+
|
423 |
+
# accent type and position info (forward or backward)
|
424 |
+
a1 = _numeric_feature_by_regex(r"/A:([0-9\-]+)\+", lab_curr)
|
425 |
+
a2 = _numeric_feature_by_regex(r"\+(\d+)\+", lab_curr)
|
426 |
+
a3 = _numeric_feature_by_regex(r"\+(\d+)/", lab_curr)
|
427 |
+
|
428 |
+
# number of mora in accent phrase
|
429 |
+
f1 = _numeric_feature_by_regex(r"/F:(\d+)_", lab_curr)
|
430 |
+
|
431 |
+
a2_next = _numeric_feature_by_regex(r"\+(\d+)\+", labels[n + 1])
|
432 |
+
# accent phrase border
|
433 |
+
if a3 == 1 and a2_next == 1 and p3 in "aeiouAEIOUNcl":
|
434 |
+
phones.append("#")
|
435 |
+
# pitch falling
|
436 |
+
elif a1 == 0 and a2_next == a2 + 1 and a2 != f1:
|
437 |
+
phones.append("]")
|
438 |
+
# pitch rising
|
439 |
+
elif a2 == 1 and a2_next == 2:
|
440 |
+
phones.append("[")
|
441 |
+
|
442 |
+
return phones
|
443 |
+
|
444 |
+
|
445 |
+
def _numeric_feature_by_regex(regex, s):
|
446 |
+
match = re.search(regex, s)
|
447 |
+
if match is None:
|
448 |
+
return -50
|
449 |
+
return int(match.group(1))
|
450 |
+
|
451 |
+
|
452 |
+
def fix_phone_tone(phone_tone_list: list[tuple[str, int]]) -> list[tuple[str, int]]:
|
453 |
+
"""
|
454 |
+
`phone_tone_list`のtone(アクセントの値)を0か1の範囲に修正する。
|
455 |
+
例: [(a, 0), (i, -1), (u, -1)] → [(a, 1), (i, 0), (u, 0)]
|
456 |
+
"""
|
457 |
+
tone_values = set(tone for _, tone in phone_tone_list)
|
458 |
+
if len(tone_values) == 1:
|
459 |
+
assert tone_values == {0}, tone_values
|
460 |
+
return phone_tone_list
|
461 |
+
elif len(tone_values) == 2:
|
462 |
+
if tone_values == {0, 1}:
|
463 |
+
return phone_tone_list
|
464 |
+
elif tone_values == {-1, 0}:
|
465 |
+
return [
|
466 |
+
(letter, 0 if tone == -1 else 1) for letter, tone in phone_tone_list
|
467 |
+
]
|
468 |
+
else:
|
469 |
+
raise ValueError(f"Unexpected tone values: {tone_values}")
|
470 |
+
else:
|
471 |
+
raise ValueError(f"Unexpected tone values: {tone_values}")
|
472 |
+
|
473 |
+
|
474 |
+
def distribute_phone(n_phone: int, n_word: int) -> list[int]:
|
475 |
+
"""
|
476 |
+
左から右に1ずつ振り分け、次にまた左から右に1ずつ増やし、というふうに、
|
477 |
+
音素の数`n_phone`を単語の数`n_word`に分配する。
|
478 |
+
"""
|
479 |
+
phones_per_word = [0] * n_word
|
480 |
+
for _ in range(n_phone):
|
481 |
+
min_tasks = min(phones_per_word)
|
482 |
+
min_index = phones_per_word.index(min_tasks)
|
483 |
+
phones_per_word[min_index] += 1
|
484 |
+
return phones_per_word
|
485 |
+
|
486 |
+
|
487 |
+
def handle_long(sep_phonemes: list[list[str]]) -> list[list[str]]:
|
488 |
+
for i in range(len(sep_phonemes)):
|
489 |
+
if sep_phonemes[i][0] == "ー":
|
490 |
+
sep_phonemes[i][0] = sep_phonemes[i - 1][-1]
|
491 |
+
if "ー" in sep_phonemes[i]:
|
492 |
+
for j in range(len(sep_phonemes[i])):
|
493 |
+
if sep_phonemes[i][j] == "ー":
|
494 |
+
sep_phonemes[i][j] = sep_phonemes[i][j - 1][-1]
|
495 |
+
return sep_phonemes
|
496 |
+
|
497 |
+
|
498 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/deberta-v2-large-japanese-char-wwm")
|
499 |
+
|
500 |
+
|
501 |
+
def align_tones(
|
502 |
+
phones_with_punct: list[str], phone_tone_list: list[tuple[str, int]]
|
503 |
+
) -> list[tuple[str, int]]:
|
504 |
+
"""
|
505 |
+
例:
|
506 |
+
…私は、、そう思う。
|
507 |
+
phones_with_punct:
|
508 |
+
[".", ".", ".", "w", "a", "t", "a", "sh", "i", "w", "a", ",", ",", "s", "o", "o", "o", "m", "o", "u", "."]
|
509 |
+
phone_tone_list:
|
510 |
+
[("w", 0), ("a", 0), ("t", 1), ("a", 1), ("sh", 1), ("i", 1), ("w", 1), ("a", 1), ("_", 0), ("s", 0), ("o", 0), ("o", 1), ("o", 1), ("m", 1), ("o", 1), ("u", 0))]
|
511 |
+
Return:
|
512 |
+
[(".", 0), (".", 0), (".", 0), ("w", 0), ("a", 0), ("t", 1), ("a", 1), ("sh", 1), ("i", 1), ("w", 1), ("a", 1), (",", 0), (",", 0), ("s", 0), ("o", 0), ("o", 1), ("o", 1), ("m", 1), ("o", 1), ("u", 0), (".", 0)]
|
513 |
+
"""
|
514 |
+
result: list[tuple[str, int]] = []
|
515 |
+
tone_index = 0
|
516 |
+
for phone in phones_with_punct:
|
517 |
+
if tone_index >= len(phone_tone_list):
|
518 |
+
# 余ったpunctuationがある場合 → (punctuation, 0)を追加
|
519 |
+
result.append((phone, 0))
|
520 |
+
elif phone == phone_tone_list[tone_index][0]:
|
521 |
+
# phone_tone_listの現在の音素と一致する場合 → toneをそこから取得、(phone, tone)を追加
|
522 |
+
result.append((phone, phone_tone_list[tone_index][1]))
|
523 |
+
# 探すindexを1つ進める
|
524 |
+
tone_index += 1
|
525 |
+
elif phone in punctuation:
|
526 |
+
# phoneがpunctuationの場合 → (phone, 0)を追加
|
527 |
+
result.append((phone, 0))
|
528 |
+
else:
|
529 |
+
logger.debug(f"phones: {phones_with_punct}")
|
530 |
+
logger.debug(f"phone_tone_list: {phone_tone_list}")
|
531 |
+
logger.debug(f"result: {result}")
|
532 |
+
logger.debug(f"tone_index: {tone_index}")
|
533 |
+
logger.debug(f"phone: {phone}")
|
534 |
+
raise ValueError(f"Unexpected phone: {phone}")
|
535 |
+
return result
|
536 |
+
|
537 |
+
|
538 |
+
def kata2phoneme_list(text: str) -> list[str]:
|
539 |
+
"""
|
540 |
+
原則カタカナの`text`を受け取り、それをそのままいじらずに音素記号のリストに変換。
|
541 |
+
注意点:
|
542 |
+
- punctuationが来た場合(punctuationが1文字の場合がありうる)、処理せず1文字のリストを返す
|
543 |
+
- 冒頭に続く「ー」はそのまま「ー」のままにする(`handle_long()`で処理される)
|
544 |
+
- 文中の「ー」は前の音素記号の最後の音素記号に変換される。
|
545 |
+
例:
|
546 |
+
`ーーソーナノカーー` → ["ー", "ー", "s", "o", "o", "n", "a", "n", "o", "k", "a", "a", "a"]
|
547 |
+
`?` → ["?"]
|
548 |
+
"""
|
549 |
+
if text in punctuation:
|
550 |
+
return [text]
|
551 |
+
elif text == "--":
|
552 |
+
return ["-", "-"]
|
553 |
+
# `text`がカタカナ(`ー`含む)のみからなるかどうかをチェック
|
554 |
+
if re.fullmatch(r"[\u30A0-\u30FF]+", text) is None:
|
555 |
+
raise ValueError(f"Input must be katakana only: {text}")
|
556 |
+
sorted_keys = sorted(mora_kata_to_mora_phonemes.keys(), key=len, reverse=True)
|
557 |
+
pattern = "|".join(map(re.escape, sorted_keys))
|
558 |
+
|
559 |
+
def mora2phonemes(mora: str) -> str:
|
560 |
+
cosonant, vowel = mora_kata_to_mora_phonemes[mora]
|
561 |
+
if cosonant is None:
|
562 |
+
return f" {vowel}"
|
563 |
+
return f" {cosonant} {vowel}"
|
564 |
+
|
565 |
+
spaced_phonemes = re.sub(pattern, lambda m: mora2phonemes(m.group()), text)
|
566 |
+
|
567 |
+
# 長音記号「ー」の処理
|
568 |
+
long_pattern = r"(\w)(ー*)"
|
569 |
+
long_replacement = lambda m: m.group(1) + (" " + m.group(1)) * len(m.group(2))
|
570 |
+
spaced_phonemes = re.sub(long_pattern, long_replacement, spaced_phonemes)
|
571 |
+
return spaced_phonemes.strip().split(" ")
|
572 |
+
|
573 |
+
|
574 |
+
if __name__ == "__main__":
|
575 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/deberta-v2-large-japanese")
|
576 |
+
text = "hello,こんにちは、世界ー!……"
|
577 |
+
from text.japanese_bert import get_bert_feature
|
578 |
+
|
579 |
+
text = text_normalize(text)
|
580 |
+
print(text)
|
581 |
+
|
582 |
+
phones, tones, word2ph = g2p(text)
|
583 |
+
bert = get_bert_feature(text, word2ph)
|
584 |
+
|
585 |
+
print(phones, tones, word2ph, bert.shape)
|
text/japanese_bert.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
5 |
+
|
6 |
+
from config import config
|
7 |
+
from text.japanese import text2sep_kata
|
8 |
+
|
9 |
+
LOCAL_PATH = "./bert/deberta-v2-large-japanese-char-wwm"
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
|
12 |
+
|
13 |
+
models = dict()
|
14 |
+
|
15 |
+
|
16 |
+
def get_bert_feature(
|
17 |
+
text,
|
18 |
+
word2ph,
|
19 |
+
device=config.bert_gen_config.device,
|
20 |
+
assist_text=None,
|
21 |
+
assist_text_weight=0.7,
|
22 |
+
):
|
23 |
+
text = "".join(text2sep_kata(text)[0])
|
24 |
+
if assist_text:
|
25 |
+
assist_text = "".join(text2sep_kata(assist_text)[0])
|
26 |
+
if (
|
27 |
+
sys.platform == "darwin"
|
28 |
+
and torch.backends.mps.is_available()
|
29 |
+
and device == "cpu"
|
30 |
+
):
|
31 |
+
device = "mps"
|
32 |
+
if not device:
|
33 |
+
device = "cuda"
|
34 |
+
if device == "cuda" and not torch.cuda.is_available():
|
35 |
+
device = "cpu"
|
36 |
+
if device not in models.keys():
|
37 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
|
38 |
+
with torch.no_grad():
|
39 |
+
inputs = tokenizer(text, return_tensors="pt")
|
40 |
+
for i in inputs:
|
41 |
+
inputs[i] = inputs[i].to(device)
|
42 |
+
res = models[device](**inputs, output_hidden_states=True)
|
43 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
44 |
+
if assist_text:
|
45 |
+
style_inputs = tokenizer(assist_text, return_tensors="pt")
|
46 |
+
for i in style_inputs:
|
47 |
+
style_inputs[i] = style_inputs[i].to(device)
|
48 |
+
style_res = models[device](**style_inputs, output_hidden_states=True)
|
49 |
+
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
50 |
+
style_res_mean = style_res.mean(0)
|
51 |
+
|
52 |
+
assert len(word2ph) == len(text) + 2, text
|
53 |
+
word2phone = word2ph
|
54 |
+
phone_level_feature = []
|
55 |
+
for i in range(len(word2phone)):
|
56 |
+
if assist_text:
|
57 |
+
repeat_feature = (
|
58 |
+
res[i].repeat(word2phone[i], 1) * (1 - assist_text_weight)
|
59 |
+
+ style_res_mean.repeat(word2phone[i], 1) * assist_text_weight
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
63 |
+
phone_level_feature.append(repeat_feature)
|
64 |
+
|
65 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
66 |
+
|
67 |
+
return phone_level_feature.T
|
text/japanese_mora_list.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
VOICEVOXのソースコードからお借りして最低限に改造したコード。
|
3 |
+
https://github.com/VOICEVOX/voicevox_engine/blob/master/voicevox_engine/tts_pipeline/mora_list.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
"""
|
7 |
+
以下のモーラ対応表はOpenJTalkのソースコードから取得し、
|
8 |
+
カタカナ表記とモーラが一対一対応するように改造した。
|
9 |
+
ライセンス表記:
|
10 |
+
-----------------------------------------------------------------
|
11 |
+
The Japanese TTS System "Open JTalk"
|
12 |
+
developed by HTS Working Group
|
13 |
+
http://open-jtalk.sourceforge.net/
|
14 |
+
-----------------------------------------------------------------
|
15 |
+
|
16 |
+
Copyright (c) 2008-2014 Nagoya Institute of Technology
|
17 |
+
Department of Computer Science
|
18 |
+
|
19 |
+
All rights reserved.
|
20 |
+
|
21 |
+
Redistribution and use in source and binary forms, with or
|
22 |
+
without modification, are permitted provided that the following
|
23 |
+
conditions are met:
|
24 |
+
|
25 |
+
- Redistributions of source code must retain the above copyright
|
26 |
+
notice, this list of conditions and the following disclaimer.
|
27 |
+
- Redistributions in binary form must reproduce the above
|
28 |
+
copyright notice, this list of conditions and the following
|
29 |
+
disclaimer in the documentation and/or other materials provided
|
30 |
+
with the distribution.
|
31 |
+
- Neither the name of the HTS working group nor the names of its
|
32 |
+
contributors may be used to endorse or promote products derived
|
33 |
+
from this software without specific prior written permission.
|
34 |
+
|
35 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
36 |
+
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
37 |
+
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
38 |
+
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
39 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
|
40 |
+
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
41 |
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
42 |
+
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
43 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
44 |
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
45 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
46 |
+
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
47 |
+
POSSIBILITY OF SUCH DAMAGE.
|
48 |
+
"""
|
49 |
+
from typing import Optional
|
50 |
+
|
51 |
+
# (カタカナ, 子音, 母音)の順。子音がない場合はNoneを入れる。
|
52 |
+
# 但し「ン」と「ッ」は母音のみという扱いで、「ン」は「N」、「ッ」は「q」とする。
|
53 |
+
# (元々「ッ」は「cl」)
|
54 |
+
# また「デェ = dy e」はpyopenjtalkの出力(de e)と合わないため削除
|
55 |
+
_mora_list_minimum: list[tuple[str, Optional[str], str]] = [
|
56 |
+
("ヴォ", "v", "o"),
|
57 |
+
("ヴェ", "v", "e"),
|
58 |
+
("ヴィ", "v", "i"),
|
59 |
+
("ヴァ", "v", "a"),
|
60 |
+
("ヴ", "v", "u"),
|
61 |
+
("ン", None, "N"),
|
62 |
+
("ワ", "w", "a"),
|
63 |
+
("ロ", "r", "o"),
|
64 |
+
("レ", "r", "e"),
|
65 |
+
("ル", "r", "u"),
|
66 |
+
("リョ", "ry", "o"),
|
67 |
+
("リュ", "ry", "u"),
|
68 |
+
("リャ", "ry", "a"),
|
69 |
+
("リェ", "ry", "e"),
|
70 |
+
("リ", "r", "i"),
|
71 |
+
("ラ", "r", "a"),
|
72 |
+
("ヨ", "y", "o"),
|
73 |
+
("ユ", "y", "u"),
|
74 |
+
("ヤ", "y", "a"),
|
75 |
+
("モ", "m", "o"),
|
76 |
+
("メ", "m", "e"),
|
77 |
+
("ム", "m", "u"),
|
78 |
+
("ミョ", "my", "o"),
|
79 |
+
("ミュ", "my", "u"),
|
80 |
+
("ミャ", "my", "a"),
|
81 |
+
("ミェ", "my", "e"),
|
82 |
+
("ミ", "m", "i"),
|
83 |
+
("マ", "m", "a"),
|
84 |
+
("ポ", "p", "o"),
|
85 |
+
("ボ", "b", "o"),
|
86 |
+
("ホ", "h", "o"),
|
87 |
+
("ペ", "p", "e"),
|
88 |
+
("ベ", "b", "e"),
|
89 |
+
("ヘ", "h", "e"),
|
90 |
+
("プ", "p", "u"),
|
91 |
+
("ブ", "b", "u"),
|
92 |
+
("フォ", "f", "o"),
|
93 |
+
("フェ", "f", "e"),
|
94 |
+
("フィ", "f", "i"),
|
95 |
+
("ファ", "f", "a"),
|
96 |
+
("フ", "f", "u"),
|
97 |
+
("ピョ", "py", "o"),
|
98 |
+
("ピュ", "py", "u"),
|
99 |
+
("ピャ", "py", "a"),
|
100 |
+
("ピェ", "py", "e"),
|
101 |
+
("ピ", "p", "i"),
|
102 |
+
("ビョ", "by", "o"),
|
103 |
+
("ビュ", "by", "u"),
|
104 |
+
("ビャ", "by", "a"),
|
105 |
+
("ビェ", "by", "e"),
|
106 |
+
("ビ", "b", "i"),
|
107 |
+
("ヒョ", "hy", "o"),
|
108 |
+
("ヒュ", "hy", "u"),
|
109 |
+
("ヒャ", "hy", "a"),
|
110 |
+
("ヒェ", "hy", "e"),
|
111 |
+
("ヒ", "h", "i"),
|
112 |
+
("パ", "p", "a"),
|
113 |
+
("バ", "b", "a"),
|
114 |
+
("ハ", "h", "a"),
|
115 |
+
("ノ", "n", "o"),
|
116 |
+
("ネ", "n", "e"),
|
117 |
+
("ヌ", "n", "u"),
|
118 |
+
("ニョ", "ny", "o"),
|
119 |
+
("ニュ", "ny", "u"),
|
120 |
+
("ニャ", "ny", "a"),
|
121 |
+
("ニェ", "ny", "e"),
|
122 |
+
("ニ", "n", "i"),
|
123 |
+
("ナ", "n", "a"),
|
124 |
+
("ドゥ", "d", "u"),
|
125 |
+
("ド", "d", "o"),
|
126 |
+
("トゥ", "t", "u"),
|
127 |
+
("ト", "t", "o"),
|
128 |
+
("デョ", "dy", "o"),
|
129 |
+
("デュ", "dy", "u"),
|
130 |
+
("デャ", "dy", "a"),
|
131 |
+
# ("デェ", "dy", "e"),
|
132 |
+
("ディ", "d", "i"),
|
133 |
+
("デ", "d", "e"),
|
134 |
+
("テョ", "ty", "o"),
|
135 |
+
("テュ", "ty", "u"),
|
136 |
+
("テャ", "ty", "a"),
|
137 |
+
("ティ", "t", "i"),
|
138 |
+
("テ", "t", "e"),
|
139 |
+
("ツォ", "ts", "o"),
|
140 |
+
("ツェ", "ts", "e"),
|
141 |
+
("ツィ", "ts", "i"),
|
142 |
+
("ツァ", "ts", "a"),
|
143 |
+
("ツ", "ts", "u"),
|
144 |
+
("ッ", None, "q"), # 「cl」から「q」に変更
|
145 |
+
("チョ", "ch", "o"),
|
146 |
+
("チュ", "ch", "u"),
|
147 |
+
("チャ", "ch", "a"),
|
148 |
+
("チェ", "ch", "e"),
|
149 |
+
("チ", "ch", "i"),
|
150 |
+
("ダ", "d", "a"),
|
151 |
+
("タ", "t", "a"),
|
152 |
+
("ゾ", "z", "o"),
|
153 |
+
("ソ", "s", "o"),
|
154 |
+
("ゼ", "z", "e"),
|
155 |
+
("セ", "s", "e"),
|
156 |
+
("ズィ", "z", "i"),
|
157 |
+
("ズ", "z", "u"),
|
158 |
+
("スィ", "s", "i"),
|
159 |
+
("ス", "s", "u"),
|
160 |
+
("ジョ", "j", "o"),
|
161 |
+
("ジュ", "j", "u"),
|
162 |
+
("ジャ", "j", "a"),
|
163 |
+
("ジェ", "j", "e"),
|
164 |
+
("ジ", "j", "i"),
|
165 |
+
("ショ", "sh", "o"),
|
166 |
+
("シュ", "sh", "u"),
|
167 |
+
("シャ", "sh", "a"),
|
168 |
+
("シェ", "sh", "e"),
|
169 |
+
("シ", "sh", "i"),
|
170 |
+
("ザ", "z", "a"),
|
171 |
+
("サ", "s", "a"),
|
172 |
+
("ゴ", "g", "o"),
|
173 |
+
("コ", "k", "o"),
|
174 |
+
("ゲ", "g", "e"),
|
175 |
+
("ケ", "k", "e"),
|
176 |
+
("グヮ", "gw", "a"),
|
177 |
+
("グ", "g", "u"),
|
178 |
+
("クヮ", "kw", "a"),
|
179 |
+
("ク", "k", "u"),
|
180 |
+
("ギョ", "gy", "o"),
|
181 |
+
("ギュ", "gy", "u"),
|
182 |
+
("ギャ", "gy", "a"),
|
183 |
+
("ギェ", "gy", "e"),
|
184 |
+
("ギ", "g", "i"),
|
185 |
+
("キョ", "ky", "o"),
|
186 |
+
("キュ", "ky", "u"),
|
187 |
+
("キャ", "ky", "a"),
|
188 |
+
("キェ", "ky", "e"),
|
189 |
+
("キ", "k", "i"),
|
190 |
+
("ガ", "g", "a"),
|
191 |
+
("カ", "k", "a"),
|
192 |
+
("オ", None, "o"),
|
193 |
+
("エ", None, "e"),
|
194 |
+
("ウォ", "w", "o"),
|
195 |
+
("ウェ", "w", "e"),
|
196 |
+
("ウィ", "w", "i"),
|
197 |
+
("ウ", None, "u"),
|
198 |
+
("イェ", "y", "e"),
|
199 |
+
("イ", None, "i"),
|
200 |
+
("ア", None, "a"),
|
201 |
+
]
|
202 |
+
_mora_list_additional: list[tuple[str, Optional[str], str]] = [
|
203 |
+
("ヴョ", "by", "o"),
|
204 |
+
("ヴュ", "by", "u"),
|
205 |
+
("ヴャ", "by", "a"),
|
206 |
+
("ヲ", None, "o"),
|
207 |
+
("ヱ", None, "e"),
|
208 |
+
("ヰ", None, "i"),
|
209 |
+
("ヮ", "w", "a"),
|
210 |
+
("ョ", "y", "o"),
|
211 |
+
("ュ", "y", "u"),
|
212 |
+
("ヅ", "z", "u"),
|
213 |
+
("ヂ", "j", "i"),
|
214 |
+
("ヶ", "k", "e"),
|
215 |
+
("ャ", "y", "a"),
|
216 |
+
("ォ", None, "o"),
|
217 |
+
("ェ", None, "e"),
|
218 |
+
("ゥ", None, "u"),
|
219 |
+
("ィ", None, "i"),
|
220 |
+
("ァ", None, "a"),
|
221 |
+
]
|
222 |
+
|
223 |
+
# 例: "vo" -> "ヴォ", "a" -> "ア"
|
224 |
+
mora_phonemes_to_mora_kata: dict[str, str] = {
|
225 |
+
(consonant or "") + vowel: kana for [kana, consonant, vowel] in _mora_list_minimum
|
226 |
+
}
|
227 |
+
|
228 |
+
# 例: "ヴォ" -> ("v", "o"), "ア" -> (None, "a")
|
229 |
+
mora_kata_to_mora_phonemes: dict[str, tuple[Optional[str], str]] = {
|
230 |
+
kana: (consonant, vowel)
|
231 |
+
for [kana, consonant, vowel] in _mora_list_minimum + _mora_list_additional
|
232 |
+
}
|
text/opencpop-strict.txt
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a AA a
|
2 |
+
ai AA ai
|
3 |
+
an AA an
|
4 |
+
ang AA ang
|
5 |
+
ao AA ao
|
6 |
+
ba b a
|
7 |
+
bai b ai
|
8 |
+
ban b an
|
9 |
+
bang b ang
|
10 |
+
bao b ao
|
11 |
+
bei b ei
|
12 |
+
ben b en
|
13 |
+
beng b eng
|
14 |
+
bi b i
|
15 |
+
bian b ian
|
16 |
+
biao b iao
|
17 |
+
bie b ie
|
18 |
+
bin b in
|
19 |
+
bing b ing
|
20 |
+
bo b o
|
21 |
+
bu b u
|
22 |
+
ca c a
|
23 |
+
cai c ai
|
24 |
+
can c an
|
25 |
+
cang c ang
|
26 |
+
cao c ao
|
27 |
+
ce c e
|
28 |
+
cei c ei
|
29 |
+
cen c en
|
30 |
+
ceng c eng
|
31 |
+
cha ch a
|
32 |
+
chai ch ai
|
33 |
+
chan ch an
|
34 |
+
chang ch ang
|
35 |
+
chao ch ao
|
36 |
+
che ch e
|
37 |
+
chen ch en
|
38 |
+
cheng ch eng
|
39 |
+
chi ch ir
|
40 |
+
chong ch ong
|
41 |
+
chou ch ou
|
42 |
+
chu ch u
|
43 |
+
chua ch ua
|
44 |
+
chuai ch uai
|
45 |
+
chuan ch uan
|
46 |
+
chuang ch uang
|
47 |
+
chui ch ui
|
48 |
+
chun ch un
|
49 |
+
chuo ch uo
|
50 |
+
ci c i0
|
51 |
+
cong c ong
|
52 |
+
cou c ou
|
53 |
+
cu c u
|
54 |
+
cuan c uan
|
55 |
+
cui c ui
|
56 |
+
cun c un
|
57 |
+
cuo c uo
|
58 |
+
da d a
|
59 |
+
dai d ai
|
60 |
+
dan d an
|
61 |
+
dang d ang
|
62 |
+
dao d ao
|
63 |
+
de d e
|
64 |
+
dei d ei
|
65 |
+
den d en
|
66 |
+
deng d eng
|
67 |
+
di d i
|
68 |
+
dia d ia
|
69 |
+
dian d ian
|
70 |
+
diao d iao
|
71 |
+
die d ie
|
72 |
+
ding d ing
|
73 |
+
diu d iu
|
74 |
+
dong d ong
|
75 |
+
dou d ou
|
76 |
+
du d u
|
77 |
+
duan d uan
|
78 |
+
dui d ui
|
79 |
+
dun d un
|
80 |
+
duo d uo
|
81 |
+
e EE e
|
82 |
+
ei EE ei
|
83 |
+
en EE en
|
84 |
+
eng EE eng
|
85 |
+
er EE er
|
86 |
+
fa f a
|
87 |
+
fan f an
|
88 |
+
fang f ang
|
89 |
+
fei f ei
|
90 |
+
fen f en
|
91 |
+
feng f eng
|
92 |
+
fo f o
|
93 |
+
fou f ou
|
94 |
+
fu f u
|
95 |
+
ga g a
|
96 |
+
gai g ai
|
97 |
+
gan g an
|
98 |
+
gang g ang
|
99 |
+
gao g ao
|
100 |
+
ge g e
|
101 |
+
gei g ei
|
102 |
+
gen g en
|
103 |
+
geng g eng
|
104 |
+
gong g ong
|
105 |
+
gou g ou
|
106 |
+
gu g u
|
107 |
+
gua g ua
|
108 |
+
guai g uai
|
109 |
+
guan g uan
|
110 |
+
guang g uang
|
111 |
+
gui g ui
|
112 |
+
gun g un
|
113 |
+
guo g uo
|
114 |
+
ha h a
|
115 |
+
hai h ai
|
116 |
+
han h an
|
117 |
+
hang h ang
|
118 |
+
hao h ao
|
119 |
+
he h e
|
120 |
+
hei h ei
|
121 |
+
hen h en
|
122 |
+
heng h eng
|
123 |
+
hong h ong
|
124 |
+
hou h ou
|
125 |
+
hu h u
|
126 |
+
hua h ua
|
127 |
+
huai h uai
|
128 |
+
huan h uan
|
129 |
+
huang h uang
|
130 |
+
hui h ui
|
131 |
+
hun h un
|
132 |
+
huo h uo
|
133 |
+
ji j i
|
134 |
+
jia j ia
|
135 |
+
jian j ian
|
136 |
+
jiang j iang
|
137 |
+
jiao j iao
|
138 |
+
jie j ie
|
139 |
+
jin j in
|
140 |
+
jing j ing
|
141 |
+
jiong j iong
|
142 |
+
jiu j iu
|
143 |
+
ju j v
|
144 |
+
jv j v
|
145 |
+
juan j van
|
146 |
+
jvan j van
|
147 |
+
jue j ve
|
148 |
+
jve j ve
|
149 |
+
jun j vn
|
150 |
+
jvn j vn
|
151 |
+
ka k a
|
152 |
+
kai k ai
|
153 |
+
kan k an
|
154 |
+
kang k ang
|
155 |
+
kao k ao
|
156 |
+
ke k e
|
157 |
+
kei k ei
|
158 |
+
ken k en
|
159 |
+
keng k eng
|
160 |
+
kong k ong
|
161 |
+
kou k ou
|
162 |
+
ku k u
|
163 |
+
kua k ua
|
164 |
+
kuai k uai
|
165 |
+
kuan k uan
|
166 |
+
kuang k uang
|
167 |
+
kui k ui
|
168 |
+
kun k un
|
169 |
+
kuo k uo
|
170 |
+
la l a
|
171 |
+
lai l ai
|
172 |
+
lan l an
|
173 |
+
lang l ang
|
174 |
+
lao l ao
|
175 |
+
le l e
|
176 |
+
lei l ei
|
177 |
+
leng l eng
|
178 |
+
li l i
|
179 |
+
lia l ia
|
180 |
+
lian l ian
|
181 |
+
liang l iang
|
182 |
+
liao l iao
|
183 |
+
lie l ie
|
184 |
+
lin l in
|
185 |
+
ling l ing
|
186 |
+
liu l iu
|
187 |
+
lo l o
|
188 |
+
long l ong
|
189 |
+
lou l ou
|
190 |
+
lu l u
|
191 |
+
luan l uan
|
192 |
+
lun l un
|
193 |
+
luo l uo
|
194 |
+
lv l v
|
195 |
+
lve l ve
|
196 |
+
ma m a
|
197 |
+
mai m ai
|
198 |
+
man m an
|
199 |
+
mang m ang
|
200 |
+
mao m ao
|
201 |
+
me m e
|
202 |
+
mei m ei
|
203 |
+
men m en
|
204 |
+
meng m eng
|
205 |
+
mi m i
|
206 |
+
mian m ian
|
207 |
+
miao m iao
|
208 |
+
mie m ie
|
209 |
+
min m in
|
210 |
+
ming m ing
|
211 |
+
miu m iu
|
212 |
+
mo m o
|
213 |
+
mou m ou
|
214 |
+
mu m u
|
215 |
+
na n a
|
216 |
+
nai n ai
|
217 |
+
nan n an
|
218 |
+
nang n ang
|
219 |
+
nao n ao
|
220 |
+
ne n e
|
221 |
+
nei n ei
|
222 |
+
nen n en
|
223 |
+
neng n eng
|
224 |
+
ni n i
|
225 |
+
nian n ian
|
226 |
+
niang n iang
|
227 |
+
niao n iao
|
228 |
+
nie n ie
|
229 |
+
nin n in
|
230 |
+
ning n ing
|
231 |
+
niu n iu
|
232 |
+
nong n ong
|
233 |
+
nou n ou
|
234 |
+
nu n u
|
235 |
+
nuan n uan
|
236 |
+
nun n un
|
237 |
+
nuo n uo
|
238 |
+
nv n v
|
239 |
+
nve n ve
|
240 |
+
o OO o
|
241 |
+
ou OO ou
|
242 |
+
pa p a
|
243 |
+
pai p ai
|
244 |
+
pan p an
|
245 |
+
pang p ang
|
246 |
+
pao p ao
|
247 |
+
pei p ei
|
248 |
+
pen p en
|
249 |
+
peng p eng
|
250 |
+
pi p i
|
251 |
+
pian p ian
|
252 |
+
piao p iao
|
253 |
+
pie p ie
|
254 |
+
pin p in
|
255 |
+
ping p ing
|
256 |
+
po p o
|
257 |
+
pou p ou
|
258 |
+
pu p u
|
259 |
+
qi q i
|
260 |
+
qia q ia
|
261 |
+
qian q ian
|
262 |
+
qiang q iang
|
263 |
+
qiao q iao
|
264 |
+
qie q ie
|
265 |
+
qin q in
|
266 |
+
qing q ing
|
267 |
+
qiong q iong
|
268 |
+
qiu q iu
|
269 |
+
qu q v
|
270 |
+
qv q v
|
271 |
+
quan q van
|
272 |
+
qvan q van
|
273 |
+
que q ve
|
274 |
+
qve q ve
|
275 |
+
qun q vn
|
276 |
+
qvn q vn
|
277 |
+
ran r an
|
278 |
+
rang r ang
|
279 |
+
rao r ao
|
280 |
+
re r e
|
281 |
+
ren r en
|
282 |
+
reng r eng
|
283 |
+
ri r ir
|
284 |
+
rong r ong
|
285 |
+
rou r ou
|
286 |
+
ru r u
|
287 |
+
rua r ua
|
288 |
+
ruan r uan
|
289 |
+
rui r ui
|
290 |
+
run r un
|
291 |
+
ruo r uo
|
292 |
+
sa s a
|
293 |
+
sai s ai
|
294 |
+
san s an
|
295 |
+
sang s ang
|
296 |
+
sao s ao
|
297 |
+
se s e
|
298 |
+
sen s en
|
299 |
+
seng s eng
|
300 |
+
sha sh a
|
301 |
+
shai sh ai
|
302 |
+
shan sh an
|
303 |
+
shang sh ang
|
304 |
+
shao sh ao
|
305 |
+
she sh e
|
306 |
+
shei sh ei
|
307 |
+
shen sh en
|
308 |
+
sheng sh eng
|
309 |
+
shi sh ir
|
310 |
+
shou sh ou
|
311 |
+
shu sh u
|
312 |
+
shua sh ua
|
313 |
+
shuai sh uai
|
314 |
+
shuan sh uan
|
315 |
+
shuang sh uang
|
316 |
+
shui sh ui
|
317 |
+
shun sh un
|
318 |
+
shuo sh uo
|
319 |
+
si s i0
|
320 |
+
song s ong
|
321 |
+
sou s ou
|
322 |
+
su s u
|
323 |
+
suan s uan
|
324 |
+
sui s ui
|
325 |
+
sun s un
|
326 |
+
suo s uo
|
327 |
+
ta t a
|
328 |
+
tai t ai
|
329 |
+
tan t an
|
330 |
+
tang t ang
|
331 |
+
tao t ao
|
332 |
+
te t e
|
333 |
+
tei t ei
|
334 |
+
teng t eng
|
335 |
+
ti t i
|
336 |
+
tian t ian
|
337 |
+
tiao t iao
|
338 |
+
tie t ie
|
339 |
+
ting t ing
|
340 |
+
tong t ong
|
341 |
+
tou t ou
|
342 |
+
tu t u
|
343 |
+
tuan t uan
|
344 |
+
tui t ui
|
345 |
+
tun t un
|
346 |
+
tuo t uo
|
347 |
+
wa w a
|
348 |
+
wai w ai
|
349 |
+
wan w an
|
350 |
+
wang w ang
|
351 |
+
wei w ei
|
352 |
+
wen w en
|
353 |
+
weng w eng
|
354 |
+
wo w o
|
355 |
+
wu w u
|
356 |
+
xi x i
|
357 |
+
xia x ia
|
358 |
+
xian x ian
|
359 |
+
xiang x iang
|
360 |
+
xiao x iao
|
361 |
+
xie x ie
|
362 |
+
xin x in
|
363 |
+
xing x ing
|
364 |
+
xiong x iong
|
365 |
+
xiu x iu
|
366 |
+
xu x v
|
367 |
+
xv x v
|
368 |
+
xuan x van
|
369 |
+
xvan x van
|
370 |
+
xue x ve
|
371 |
+
xve x ve
|
372 |
+
xun x vn
|
373 |
+
xvn x vn
|
374 |
+
ya y a
|
375 |
+
yan y En
|
376 |
+
yang y ang
|
377 |
+
yao y ao
|
378 |
+
ye y E
|
379 |
+
yi y i
|
380 |
+
yin y in
|
381 |
+
ying y ing
|
382 |
+
yo y o
|
383 |
+
yong y ong
|
384 |
+
you y ou
|
385 |
+
yu y v
|
386 |
+
yv y v
|
387 |
+
yuan y van
|
388 |
+
yvan y van
|
389 |
+
yue y ve
|
390 |
+
yve y ve
|
391 |
+
yun y vn
|
392 |
+
yvn y vn
|
393 |
+
za z a
|
394 |
+
zai z ai
|
395 |
+
zan z an
|
396 |
+
zang z ang
|
397 |
+
zao z ao
|
398 |
+
ze z e
|
399 |
+
zei z ei
|
400 |
+
zen z en
|
401 |
+
zeng z eng
|
402 |
+
zha zh a
|
403 |
+
zhai zh ai
|
404 |
+
zhan zh an
|
405 |
+
zhang zh ang
|
406 |
+
zhao zh ao
|
407 |
+
zhe zh e
|
408 |
+
zhei zh ei
|
409 |
+
zhen zh en
|
410 |
+
zheng zh eng
|
411 |
+
zhi zh ir
|
412 |
+
zhong zh ong
|
413 |
+
zhou zh ou
|
414 |
+
zhu zh u
|
415 |
+
zhua zh ua
|
416 |
+
zhuai zh uai
|
417 |
+
zhuan zh uan
|
418 |
+
zhuang zh uang
|
419 |
+
zhui zh ui
|
420 |
+
zhun zh un
|
421 |
+
zhuo zh uo
|
422 |
+
zi z i0
|
423 |
+
zong z ong
|
424 |
+
zou z ou
|
425 |
+
zu z u
|
426 |
+
zuan z uan
|
427 |
+
zui z ui
|
428 |
+
zun z un
|
429 |
+
zuo z uo
|
text/symbols.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
|
2 |
+
pu_symbols = punctuation + ["SP", "UNK"]
|
3 |
+
pad = "_"
|
4 |
+
|
5 |
+
# chinese
|
6 |
+
zh_symbols = [
|
7 |
+
"E",
|
8 |
+
"En",
|
9 |
+
"a",
|
10 |
+
"ai",
|
11 |
+
"an",
|
12 |
+
"ang",
|
13 |
+
"ao",
|
14 |
+
"b",
|
15 |
+
"c",
|
16 |
+
"ch",
|
17 |
+
"d",
|
18 |
+
"e",
|
19 |
+
"ei",
|
20 |
+
"en",
|
21 |
+
"eng",
|
22 |
+
"er",
|
23 |
+
"f",
|
24 |
+
"g",
|
25 |
+
"h",
|
26 |
+
"i",
|
27 |
+
"i0",
|
28 |
+
"ia",
|
29 |
+
"ian",
|
30 |
+
"iang",
|
31 |
+
"iao",
|
32 |
+
"ie",
|
33 |
+
"in",
|
34 |
+
"ing",
|
35 |
+
"iong",
|
36 |
+
"ir",
|
37 |
+
"iu",
|
38 |
+
"j",
|
39 |
+
"k",
|
40 |
+
"l",
|
41 |
+
"m",
|
42 |
+
"n",
|
43 |
+
"o",
|
44 |
+
"ong",
|
45 |
+
"ou",
|
46 |
+
"p",
|
47 |
+
"q",
|
48 |
+
"r",
|
49 |
+
"s",
|
50 |
+
"sh",
|
51 |
+
"t",
|
52 |
+
"u",
|
53 |
+
"ua",
|
54 |
+
"uai",
|
55 |
+
"uan",
|
56 |
+
"uang",
|
57 |
+
"ui",
|
58 |
+
"un",
|
59 |
+
"uo",
|
60 |
+
"v",
|
61 |
+
"van",
|
62 |
+
"ve",
|
63 |
+
"vn",
|
64 |
+
"w",
|
65 |
+
"x",
|
66 |
+
"y",
|
67 |
+
"z",
|
68 |
+
"zh",
|
69 |
+
"AA",
|
70 |
+
"EE",
|
71 |
+
"OO",
|
72 |
+
]
|
73 |
+
num_zh_tones = 6
|
74 |
+
|
75 |
+
# japanese
|
76 |
+
ja_symbols = [
|
77 |
+
"N",
|
78 |
+
"a",
|
79 |
+
"a:",
|
80 |
+
"b",
|
81 |
+
"by",
|
82 |
+
"ch",
|
83 |
+
"d",
|
84 |
+
"dy",
|
85 |
+
"e",
|
86 |
+
"e:",
|
87 |
+
"f",
|
88 |
+
"g",
|
89 |
+
"gy",
|
90 |
+
"h",
|
91 |
+
"hy",
|
92 |
+
"i",
|
93 |
+
"i:",
|
94 |
+
"j",
|
95 |
+
"k",
|
96 |
+
"ky",
|
97 |
+
"m",
|
98 |
+
"my",
|
99 |
+
"n",
|
100 |
+
"ny",
|
101 |
+
"o",
|
102 |
+
"o:",
|
103 |
+
"p",
|
104 |
+
"py",
|
105 |
+
"q",
|
106 |
+
"r",
|
107 |
+
"ry",
|
108 |
+
"s",
|
109 |
+
"sh",
|
110 |
+
"t",
|
111 |
+
"ts",
|
112 |
+
"ty",
|
113 |
+
"u",
|
114 |
+
"u:",
|
115 |
+
"w",
|
116 |
+
"y",
|
117 |
+
"z",
|
118 |
+
"zy",
|
119 |
+
]
|
120 |
+
num_ja_tones = 2
|
121 |
+
|
122 |
+
# English
|
123 |
+
en_symbols = [
|
124 |
+
"aa",
|
125 |
+
"ae",
|
126 |
+
"ah",
|
127 |
+
"ao",
|
128 |
+
"aw",
|
129 |
+
"ay",
|
130 |
+
"b",
|
131 |
+
"ch",
|
132 |
+
"d",
|
133 |
+
"dh",
|
134 |
+
"eh",
|
135 |
+
"er",
|
136 |
+
"ey",
|
137 |
+
"f",
|
138 |
+
"g",
|
139 |
+
"hh",
|
140 |
+
"ih",
|
141 |
+
"iy",
|
142 |
+
"jh",
|
143 |
+
"k",
|
144 |
+
"l",
|
145 |
+
"m",
|
146 |
+
"n",
|
147 |
+
"ng",
|
148 |
+
"ow",
|
149 |
+
"oy",
|
150 |
+
"p",
|
151 |
+
"r",
|
152 |
+
"s",
|
153 |
+
"sh",
|
154 |
+
"t",
|
155 |
+
"th",
|
156 |
+
"uh",
|
157 |
+
"uw",
|
158 |
+
"V",
|
159 |
+
"w",
|
160 |
+
"y",
|
161 |
+
"z",
|
162 |
+
"zh",
|
163 |
+
]
|
164 |
+
num_en_tones = 4
|
165 |
+
|
166 |
+
# combine all symbols
|
167 |
+
normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
|
168 |
+
symbols = [pad] + normal_symbols + pu_symbols
|
169 |
+
sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
|
170 |
+
|
171 |
+
# combine all tones
|
172 |
+
num_tones = num_zh_tones + num_ja_tones + num_en_tones
|
173 |
+
|
174 |
+
# language maps
|
175 |
+
language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
|
176 |
+
num_languages = len(language_id_map.keys())
|
177 |
+
|
178 |
+
language_tone_start_map = {
|
179 |
+
"ZH": 0,
|
180 |
+
"JP": num_zh_tones,
|
181 |
+
"EN": num_zh_tones + num_ja_tones,
|
182 |
+
}
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
a = set(zh_symbols)
|
186 |
+
b = set(en_symbols)
|
187 |
+
print(sorted(a & b))
|
text/tone_sandhi.py
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import List
|
15 |
+
from typing import Tuple
|
16 |
+
|
17 |
+
import jieba
|
18 |
+
from pypinyin import lazy_pinyin
|
19 |
+
from pypinyin import Style
|
20 |
+
|
21 |
+
|
22 |
+
class ToneSandhi:
|
23 |
+
def __init__(self):
|
24 |
+
self.must_neural_tone_words = {
|
25 |
+
"麻烦",
|
26 |
+
"麻利",
|
27 |
+
"鸳鸯",
|
28 |
+
"高粱",
|
29 |
+
"骨头",
|
30 |
+
"骆驼",
|
31 |
+
"马虎",
|
32 |
+
"首饰",
|
33 |
+
"馒头",
|
34 |
+
"馄饨",
|
35 |
+
"风筝",
|
36 |
+
"难为",
|
37 |
+
"队伍",
|
38 |
+
"阔气",
|
39 |
+
"闺女",
|
40 |
+
"门道",
|
41 |
+
"锄头",
|
42 |
+
"铺盖",
|
43 |
+
"铃铛",
|
44 |
+
"铁匠",
|
45 |
+
"钥匙",
|
46 |
+
"里脊",
|
47 |
+
"里头",
|
48 |
+
"部分",
|
49 |
+
"那么",
|
50 |
+
"道士",
|
51 |
+
"造化",
|
52 |
+
"迷糊",
|
53 |
+
"连累",
|
54 |
+
"这么",
|
55 |
+
"这个",
|
56 |
+
"运气",
|
57 |
+
"过去",
|
58 |
+
"软和",
|
59 |
+
"转悠",
|
60 |
+
"踏实",
|
61 |
+
"跳蚤",
|
62 |
+
"跟头",
|
63 |
+
"趔趄",
|
64 |
+
"财主",
|
65 |
+
"豆腐",
|
66 |
+
"讲究",
|
67 |
+
"记性",
|
68 |
+
"记号",
|
69 |
+
"认识",
|
70 |
+
"规矩",
|
71 |
+
"见识",
|
72 |
+
"裁缝",
|
73 |
+
"补丁",
|
74 |
+
"衣裳",
|
75 |
+
"衣服",
|
76 |
+
"衙门",
|
77 |
+
"街坊",
|
78 |
+
"行李",
|
79 |
+
"行当",
|
80 |
+
"蛤蟆",
|
81 |
+
"蘑菇",
|
82 |
+
"薄荷",
|
83 |
+
"葫芦",
|
84 |
+
"葡萄",
|
85 |
+
"萝卜",
|
86 |
+
"荸荠",
|
87 |
+
"苗条",
|
88 |
+
"苗头",
|
89 |
+
"苍蝇",
|
90 |
+
"芝麻",
|
91 |
+
"舒服",
|
92 |
+
"舒坦",
|
93 |
+
"舌头",
|
94 |
+
"自在",
|
95 |
+
"膏药",
|
96 |
+
"脾气",
|
97 |
+
"脑袋",
|
98 |
+
"脊梁",
|
99 |
+
"能耐",
|
100 |
+
"胳膊",
|
101 |
+
"胭脂",
|
102 |
+
"胡萝",
|
103 |
+
"胡琴",
|
104 |
+
"胡同",
|
105 |
+
"聪明",
|
106 |
+
"耽误",
|
107 |
+
"耽搁",
|
108 |
+
"耷拉",
|
109 |
+
"耳朵",
|
110 |
+
"老爷",
|
111 |
+
"老实",
|
112 |
+
"老婆",
|
113 |
+
"老头",
|
114 |
+
"老太",
|
115 |
+
"翻腾",
|
116 |
+
"罗嗦",
|
117 |
+
"罐头",
|
118 |
+
"编辑",
|
119 |
+
"结实",
|
120 |
+
"红火",
|
121 |
+
"累赘",
|
122 |
+
"糨糊",
|
123 |
+
"糊涂",
|
124 |
+
"精神",
|
125 |
+
"粮食",
|
126 |
+
"簸箕",
|
127 |
+
"篱笆",
|
128 |
+
"算计",
|
129 |
+
"算盘",
|
130 |
+
"答应",
|
131 |
+
"笤帚",
|
132 |
+
"笑语",
|
133 |
+
"笑话",
|
134 |
+
"窟窿",
|
135 |
+
"窝囊",
|
136 |
+
"窗户",
|
137 |
+
"稳当",
|
138 |
+
"稀罕",
|
139 |
+
"称呼",
|
140 |
+
"秧歌",
|
141 |
+
"秀气",
|
142 |
+
"秀才",
|
143 |
+
"福气",
|
144 |
+
"祖宗",
|
145 |
+
"砚台",
|
146 |
+
"码头",
|
147 |
+
"石榴",
|
148 |
+
"石头",
|
149 |
+
"石匠",
|
150 |
+
"知识",
|
151 |
+
"眼睛",
|
152 |
+
"眯缝",
|
153 |
+
"眨巴",
|
154 |
+
"眉毛",
|
155 |
+
"相声",
|
156 |
+
"盘算",
|
157 |
+
"白净",
|
158 |
+
"痢疾",
|
159 |
+
"痛快",
|
160 |
+
"疟疾",
|
161 |
+
"疙瘩",
|
162 |
+
"疏忽",
|
163 |
+
"畜生",
|
164 |
+
"生意",
|
165 |
+
"甘蔗",
|
166 |
+
"琵琶",
|
167 |
+
"琢磨",
|
168 |
+
"琉璃",
|
169 |
+
"玻璃",
|
170 |
+
"玫瑰",
|
171 |
+
"玄乎",
|
172 |
+
"狐狸",
|
173 |
+
"状元",
|
174 |
+
"特务",
|
175 |
+
"牲口",
|
176 |
+
"牙碜",
|
177 |
+
"牌楼",
|
178 |
+
"爽快",
|
179 |
+
"爱人",
|
180 |
+
"热闹",
|
181 |
+
"烧饼",
|
182 |
+
"烟筒",
|
183 |
+
"烂糊",
|
184 |
+
"点心",
|
185 |
+
"炊帚",
|
186 |
+
"灯笼",
|
187 |
+
"火候",
|
188 |
+
"漂亮",
|
189 |
+
"滑溜",
|
190 |
+
"溜达",
|
191 |
+
"温和",
|
192 |
+
"清楚",
|
193 |
+
"消息",
|
194 |
+
"浪头",
|
195 |
+
"活泼",
|
196 |
+
"比方",
|
197 |
+
"正经",
|
198 |
+
"欺负",
|
199 |
+
"模糊",
|
200 |
+
"槟榔",
|
201 |
+
"棺材",
|
202 |
+
"棒槌",
|
203 |
+
"棉花",
|
204 |
+
"核桃",
|
205 |
+
"栅栏",
|
206 |
+
"柴火",
|
207 |
+
"架势",
|
208 |
+
"枕头",
|
209 |
+
"枇杷",
|
210 |
+
"机灵",
|
211 |
+
"本事",
|
212 |
+
"木头",
|
213 |
+
"木匠",
|
214 |
+
"朋友",
|
215 |
+
"月饼",
|
216 |
+
"月亮",
|
217 |
+
"暖和",
|
218 |
+
"明白",
|
219 |
+
"时候",
|
220 |
+
"新鲜",
|
221 |
+
"故事",
|
222 |
+
"收拾",
|
223 |
+
"收成",
|
224 |
+
"提防",
|
225 |
+
"挖苦",
|
226 |
+
"挑剔",
|
227 |
+
"指甲",
|
228 |
+
"指头",
|
229 |
+
"拾掇",
|
230 |
+
"拳头",
|
231 |
+
"拨弄",
|
232 |
+
"招牌",
|
233 |
+
"招呼",
|
234 |
+
"抬举",
|
235 |
+
"护士",
|
236 |
+
"折腾",
|
237 |
+
"扫帚",
|
238 |
+
"打量",
|
239 |
+
"打算",
|
240 |
+
"打点",
|
241 |
+
"打扮",
|
242 |
+
"打听",
|
243 |
+
"打发",
|
244 |
+
"扎实",
|
245 |
+
"扁担",
|
246 |
+
"戒指",
|
247 |
+
"懒得",
|
248 |
+
"意识",
|
249 |
+
"意思",
|
250 |
+
"情形",
|
251 |
+
"悟性",
|
252 |
+
"怪物",
|
253 |
+
"思量",
|
254 |
+
"怎么",
|
255 |
+
"念头",
|
256 |
+
"念叨",
|
257 |
+
"快活",
|
258 |
+
"忙活",
|
259 |
+
"志气",
|
260 |
+
"心思",
|
261 |
+
"得罪",
|
262 |
+
"张罗",
|
263 |
+
"弟兄",
|
264 |
+
"开通",
|
265 |
+
"应酬",
|
266 |
+
"庄稼",
|
267 |
+
"干事",
|
268 |
+
"帮手",
|
269 |
+
"帐篷",
|
270 |
+
"希罕",
|
271 |
+
"师父",
|
272 |
+
"师傅",
|
273 |
+
"巴结",
|
274 |
+
"巴掌",
|
275 |
+
"差事",
|
276 |
+
"工夫",
|
277 |
+
"岁数",
|
278 |
+
"屁股",
|
279 |
+
"尾巴",
|
280 |
+
"少爷",
|
281 |
+
"小气",
|
282 |
+
"小伙",
|
283 |
+
"将就",
|
284 |
+
"对头",
|
285 |
+
"对付",
|
286 |
+
"寡妇",
|
287 |
+
"家伙",
|
288 |
+
"客气",
|
289 |
+
"实在",
|
290 |
+
"官司",
|
291 |
+
"学问",
|
292 |
+
"学生",
|
293 |
+
"字号",
|
294 |
+
"嫁妆",
|
295 |
+
"媳妇",
|
296 |
+
"媒人",
|
297 |
+
"婆家",
|
298 |
+
"娘家",
|
299 |
+
"委屈",
|
300 |
+
"姑娘",
|
301 |
+
"姐夫",
|
302 |
+
"妯娌",
|
303 |
+
"妥当",
|
304 |
+
"妖精",
|
305 |
+
"奴才",
|
306 |
+
"女婿",
|
307 |
+
"头发",
|
308 |
+
"太阳",
|
309 |
+
"大爷",
|
310 |
+
"大方",
|
311 |
+
"大意",
|
312 |
+
"大夫",
|
313 |
+
"多少",
|
314 |
+
"多么",
|
315 |
+
"外甥",
|
316 |
+
"壮实",
|
317 |
+
"地道",
|
318 |
+
"地方",
|
319 |
+
"在乎",
|
320 |
+
"困难",
|
321 |
+
"嘴巴",
|
322 |
+
"嘱咐",
|
323 |
+
"嘟囔",
|
324 |
+
"嘀咕",
|
325 |
+
"喜欢",
|
326 |
+
"喇嘛",
|
327 |
+
"喇叭",
|
328 |
+
"商量",
|
329 |
+
"唾沫",
|
330 |
+
"哑巴",
|
331 |
+
"哈欠",
|
332 |
+
"哆嗦",
|
333 |
+
"咳嗽",
|
334 |
+
"和尚",
|
335 |
+
"告诉",
|
336 |
+
"告示",
|
337 |
+
"含糊",
|
338 |
+
"吓唬",
|
339 |
+
"后头",
|
340 |
+
"名字",
|
341 |
+
"名堂",
|
342 |
+
"合同",
|
343 |
+
"吆喝",
|
344 |
+
"叫唤",
|
345 |
+
"口袋",
|
346 |
+
"厚道",
|
347 |
+
"厉害",
|
348 |
+
"千斤",
|
349 |
+
"包袱",
|
350 |
+
"包涵",
|
351 |
+
"匀称",
|
352 |
+
"勤快",
|
353 |
+
"动静",
|
354 |
+
"动弹",
|
355 |
+
"功夫",
|
356 |
+
"力气",
|
357 |
+
"前头",
|
358 |
+
"刺猬",
|
359 |
+
"刺激",
|
360 |
+
"别扭",
|
361 |
+
"利落",
|
362 |
+
"利索",
|
363 |
+
"利害",
|
364 |
+
"分析",
|
365 |
+
"出息",
|
366 |
+
"凑合",
|
367 |
+
"凉快",
|
368 |
+
"冷战",
|
369 |
+
"冤枉",
|
370 |
+
"冒失",
|
371 |
+
"养活",
|
372 |
+
"关系",
|
373 |
+
"先生",
|
374 |
+
"兄弟",
|
375 |
+
"便宜",
|
376 |
+
"使唤",
|
377 |
+
"佩服",
|
378 |
+
"作坊",
|
379 |
+
"体面",
|
380 |
+
"位置",
|
381 |
+
"似的",
|
382 |
+
"伙计",
|
383 |
+
"休息",
|
384 |
+
"什么",
|
385 |
+
"人家",
|
386 |
+
"亲戚",
|
387 |
+
"亲家",
|
388 |
+
"交情",
|
389 |
+
"云彩",
|
390 |
+
"事情",
|
391 |
+
"买卖",
|
392 |
+
"主意",
|
393 |
+
"丫头",
|
394 |
+
"丧气",
|
395 |
+
"两口",
|
396 |
+
"东西",
|
397 |
+
"东家",
|
398 |
+
"世故",
|
399 |
+
"不由",
|
400 |
+
"不在",
|
401 |
+
"下水",
|
402 |
+
"下巴",
|
403 |
+
"上头",
|
404 |
+
"上司",
|
405 |
+
"丈夫",
|
406 |
+
"丈人",
|
407 |
+
"一辈",
|
408 |
+
"那个",
|
409 |
+
"菩萨",
|
410 |
+
"父亲",
|
411 |
+
"母亲",
|
412 |
+
"咕噜",
|
413 |
+
"邋遢",
|
414 |
+
"费用",
|
415 |
+
"冤家",
|
416 |
+
"甜头",
|
417 |
+
"介绍",
|
418 |
+
"荒唐",
|
419 |
+
"大人",
|
420 |
+
"泥鳅",
|
421 |
+
"幸福",
|
422 |
+
"熟悉",
|
423 |
+
"计划",
|
424 |
+
"扑腾",
|
425 |
+
"蜡烛",
|
426 |
+
"姥爷",
|
427 |
+
"照顾",
|
428 |
+
"喉咙",
|
429 |
+
"吉他",
|
430 |
+
"弄堂",
|
431 |
+
"蚂蚱",
|
432 |
+
"凤凰",
|
433 |
+
"拖沓",
|
434 |
+
"寒碜",
|
435 |
+
"糟蹋",
|
436 |
+
"倒腾",
|
437 |
+
"报复",
|
438 |
+
"逻辑",
|
439 |
+
"盘缠",
|
440 |
+
"喽啰",
|
441 |
+
"牢骚",
|
442 |
+
"咖喱",
|
443 |
+
"扫把",
|
444 |
+
"惦记",
|
445 |
+
}
|
446 |
+
self.must_not_neural_tone_words = {
|
447 |
+
"男子",
|
448 |
+
"女子",
|
449 |
+
"分子",
|
450 |
+
"原子",
|
451 |
+
"量子",
|
452 |
+
"莲子",
|
453 |
+
"石子",
|
454 |
+
"瓜子",
|
455 |
+
"电子",
|
456 |
+
"人人",
|
457 |
+
"虎虎",
|
458 |
+
}
|
459 |
+
self.punc = ":,;。?!“”‘’':,;.?!"
|
460 |
+
|
461 |
+
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
|
462 |
+
# e.g.
|
463 |
+
# word: "家里"
|
464 |
+
# pos: "s"
|
465 |
+
# finals: ['ia1', 'i3']
|
466 |
+
def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
467 |
+
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
468 |
+
for j, item in enumerate(word):
|
469 |
+
if (
|
470 |
+
j - 1 >= 0
|
471 |
+
and item == word[j - 1]
|
472 |
+
and pos[0] in {"n", "v", "a"}
|
473 |
+
and word not in self.must_not_neural_tone_words
|
474 |
+
):
|
475 |
+
finals[j] = finals[j][:-1] + "5"
|
476 |
+
ge_idx = word.find("个")
|
477 |
+
if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
478 |
+
finals[-1] = finals[-1][:-1] + "5"
|
479 |
+
elif len(word) >= 1 and word[-1] in "的地得":
|
480 |
+
finals[-1] = finals[-1][:-1] + "5"
|
481 |
+
# e.g. 走了, 看着, 去过
|
482 |
+
# elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
483 |
+
# finals[-1] = finals[-1][:-1] + "5"
|
484 |
+
elif (
|
485 |
+
len(word) > 1
|
486 |
+
and word[-1] in "们子"
|
487 |
+
and pos in {"r", "n"}
|
488 |
+
and word not in self.must_not_neural_tone_words
|
489 |
+
):
|
490 |
+
finals[-1] = finals[-1][:-1] + "5"
|
491 |
+
# e.g. 桌上, 地下, 家里
|
492 |
+
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
493 |
+
finals[-1] = finals[-1][:-1] + "5"
|
494 |
+
# e.g. 上来, 下去
|
495 |
+
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
496 |
+
finals[-1] = finals[-1][:-1] + "5"
|
497 |
+
# 个做量词
|
498 |
+
elif (
|
499 |
+
ge_idx >= 1
|
500 |
+
and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
|
501 |
+
) or word == "个":
|
502 |
+
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
503 |
+
else:
|
504 |
+
if (
|
505 |
+
word in self.must_neural_tone_words
|
506 |
+
or word[-2:] in self.must_neural_tone_words
|
507 |
+
):
|
508 |
+
finals[-1] = finals[-1][:-1] + "5"
|
509 |
+
|
510 |
+
word_list = self._split_word(word)
|
511 |
+
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
512 |
+
for i, word in enumerate(word_list):
|
513 |
+
# conventional neural in Chinese
|
514 |
+
if (
|
515 |
+
word in self.must_neural_tone_words
|
516 |
+
or word[-2:] in self.must_neural_tone_words
|
517 |
+
):
|
518 |
+
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
519 |
+
finals = sum(finals_list, [])
|
520 |
+
return finals
|
521 |
+
|
522 |
+
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
523 |
+
# e.g. 看不懂
|
524 |
+
if len(word) == 3 and word[1] == "不":
|
525 |
+
finals[1] = finals[1][:-1] + "5"
|
526 |
+
else:
|
527 |
+
for i, char in enumerate(word):
|
528 |
+
# "不" before tone4 should be bu2, e.g. 不怕
|
529 |
+
if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
|
530 |
+
finals[i] = finals[i][:-1] + "2"
|
531 |
+
return finals
|
532 |
+
|
533 |
+
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
534 |
+
# "一" in number sequences, e.g. 一零零, 二一零
|
535 |
+
if word.find("一") != -1 and all(
|
536 |
+
[item.isnumeric() for item in word if item != "一"]
|
537 |
+
):
|
538 |
+
return finals
|
539 |
+
# "一" between reduplication words should be yi5, e.g. 看一看
|
540 |
+
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
541 |
+
finals[1] = finals[1][:-1] + "5"
|
542 |
+
# when "一" is ordinal word, it should be yi1
|
543 |
+
elif word.startswith("第一"):
|
544 |
+
finals[1] = finals[1][:-1] + "1"
|
545 |
+
else:
|
546 |
+
for i, char in enumerate(word):
|
547 |
+
if char == "一" and i + 1 < len(word):
|
548 |
+
# "一" before tone4 should be yi2, e.g. 一段
|
549 |
+
if finals[i + 1][-1] == "4":
|
550 |
+
finals[i] = finals[i][:-1] + "2"
|
551 |
+
# "一" before non-tone4 should be yi4, e.g. 一天
|
552 |
+
else:
|
553 |
+
# "一" 后面如果是标点,还读一声
|
554 |
+
if word[i + 1] not in self.punc:
|
555 |
+
finals[i] = finals[i][:-1] + "4"
|
556 |
+
return finals
|
557 |
+
|
558 |
+
def _split_word(self, word: str) -> List[str]:
|
559 |
+
word_list = jieba.cut_for_search(word)
|
560 |
+
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
|
561 |
+
first_subword = word_list[0]
|
562 |
+
first_begin_idx = word.find(first_subword)
|
563 |
+
if first_begin_idx == 0:
|
564 |
+
second_subword = word[len(first_subword) :]
|
565 |
+
new_word_list = [first_subword, second_subword]
|
566 |
+
else:
|
567 |
+
second_subword = word[: -len(first_subword)]
|
568 |
+
new_word_list = [second_subword, first_subword]
|
569 |
+
return new_word_list
|
570 |
+
|
571 |
+
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
572 |
+
if len(word) == 2 and self._all_tone_three(finals):
|
573 |
+
finals[0] = finals[0][:-1] + "2"
|
574 |
+
elif len(word) == 3:
|
575 |
+
word_list = self._split_word(word)
|
576 |
+
if self._all_tone_three(finals):
|
577 |
+
# disyllabic + monosyllabic, e.g. 蒙古/包
|
578 |
+
if len(word_list[0]) == 2:
|
579 |
+
finals[0] = finals[0][:-1] + "2"
|
580 |
+
finals[1] = finals[1][:-1] + "2"
|
581 |
+
# monosyllabic + disyllabic, e.g. 纸/老虎
|
582 |
+
elif len(word_list[0]) == 1:
|
583 |
+
finals[1] = finals[1][:-1] + "2"
|
584 |
+
else:
|
585 |
+
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
586 |
+
if len(finals_list) == 2:
|
587 |
+
for i, sub in enumerate(finals_list):
|
588 |
+
# e.g. 所有/人
|
589 |
+
if self._all_tone_three(sub) and len(sub) == 2:
|
590 |
+
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
591 |
+
# e.g. 好/喜欢
|
592 |
+
elif (
|
593 |
+
i == 1
|
594 |
+
and not self._all_tone_three(sub)
|
595 |
+
and finals_list[i][0][-1] == "3"
|
596 |
+
and finals_list[0][-1][-1] == "3"
|
597 |
+
):
|
598 |
+
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
599 |
+
finals = sum(finals_list, [])
|
600 |
+
# split idiom into two words who's length is 2
|
601 |
+
elif len(word) == 4:
|
602 |
+
finals_list = [finals[:2], finals[2:]]
|
603 |
+
finals = []
|
604 |
+
for sub in finals_list:
|
605 |
+
if self._all_tone_three(sub):
|
606 |
+
sub[0] = sub[0][:-1] + "2"
|
607 |
+
finals += sub
|
608 |
+
|
609 |
+
return finals
|
610 |
+
|
611 |
+
def _all_tone_three(self, finals: List[str]) -> bool:
|
612 |
+
return all(x[-1] == "3" for x in finals)
|
613 |
+
|
614 |
+
# merge "不" and the word behind it
|
615 |
+
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
|
616 |
+
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
617 |
+
new_seg = []
|
618 |
+
last_word = ""
|
619 |
+
for word, pos in seg:
|
620 |
+
if last_word == "不":
|
621 |
+
word = last_word + word
|
622 |
+
if word != "不":
|
623 |
+
new_seg.append((word, pos))
|
624 |
+
last_word = word[:]
|
625 |
+
if last_word == "不":
|
626 |
+
new_seg.append((last_word, "d"))
|
627 |
+
last_word = ""
|
628 |
+
return new_seg
|
629 |
+
|
630 |
+
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
|
631 |
+
# function 2: merge single "一" and the word behind it
|
632 |
+
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
|
633 |
+
# e.g.
|
634 |
+
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
|
635 |
+
# output seg: [['听一听', 'v']]
|
636 |
+
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
637 |
+
new_seg = [] * len(seg)
|
638 |
+
# function 1
|
639 |
+
i = 0
|
640 |
+
while i < len(seg):
|
641 |
+
word, pos = seg[i]
|
642 |
+
if (
|
643 |
+
i - 1 >= 0
|
644 |
+
and word == "一"
|
645 |
+
and i + 1 < len(seg)
|
646 |
+
and seg[i - 1][0] == seg[i + 1][0]
|
647 |
+
and seg[i - 1][1] == "v"
|
648 |
+
):
|
649 |
+
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
650 |
+
i += 2
|
651 |
+
else:
|
652 |
+
if (
|
653 |
+
i - 2 >= 0
|
654 |
+
and seg[i - 1][0] == "一"
|
655 |
+
and seg[i - 2][0] == word
|
656 |
+
and pos == "v"
|
657 |
+
):
|
658 |
+
continue
|
659 |
+
else:
|
660 |
+
new_seg.append([word, pos])
|
661 |
+
i += 1
|
662 |
+
seg = [i for i in new_seg if len(i) > 0]
|
663 |
+
new_seg = []
|
664 |
+
# function 2
|
665 |
+
for i, (word, pos) in enumerate(seg):
|
666 |
+
if new_seg and new_seg[-1][0] == "一":
|
667 |
+
new_seg[-1][0] = new_seg[-1][0] + word
|
668 |
+
else:
|
669 |
+
new_seg.append([word, pos])
|
670 |
+
return new_seg
|
671 |
+
|
672 |
+
# the first and the second words are all_tone_three
|
673 |
+
def _merge_continuous_three_tones(
|
674 |
+
self, seg: List[Tuple[str, str]]
|
675 |
+
) -> List[Tuple[str, str]]:
|
676 |
+
new_seg = []
|
677 |
+
sub_finals_list = [
|
678 |
+
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
679 |
+
for (word, pos) in seg
|
680 |
+
]
|
681 |
+
assert len(sub_finals_list) == len(seg)
|
682 |
+
merge_last = [False] * len(seg)
|
683 |
+
for i, (word, pos) in enumerate(seg):
|
684 |
+
if (
|
685 |
+
i - 1 >= 0
|
686 |
+
and self._all_tone_three(sub_finals_list[i - 1])
|
687 |
+
and self._all_tone_three(sub_finals_list[i])
|
688 |
+
and not merge_last[i - 1]
|
689 |
+
):
|
690 |
+
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
691 |
+
if (
|
692 |
+
not self._is_reduplication(seg[i - 1][0])
|
693 |
+
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
694 |
+
):
|
695 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
696 |
+
merge_last[i] = True
|
697 |
+
else:
|
698 |
+
new_seg.append([word, pos])
|
699 |
+
else:
|
700 |
+
new_seg.append([word, pos])
|
701 |
+
|
702 |
+
return new_seg
|
703 |
+
|
704 |
+
def _is_reduplication(self, word: str) -> bool:
|
705 |
+
return len(word) == 2 and word[0] == word[1]
|
706 |
+
|
707 |
+
# the last char of first word and the first char of second word is tone_three
|
708 |
+
def _merge_continuous_three_tones_2(
|
709 |
+
self, seg: List[Tuple[str, str]]
|
710 |
+
) -> List[Tuple[str, str]]:
|
711 |
+
new_seg = []
|
712 |
+
sub_finals_list = [
|
713 |
+
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
714 |
+
for (word, pos) in seg
|
715 |
+
]
|
716 |
+
assert len(sub_finals_list) == len(seg)
|
717 |
+
merge_last = [False] * len(seg)
|
718 |
+
for i, (word, pos) in enumerate(seg):
|
719 |
+
if (
|
720 |
+
i - 1 >= 0
|
721 |
+
and sub_finals_list[i - 1][-1][-1] == "3"
|
722 |
+
and sub_finals_list[i][0][-1] == "3"
|
723 |
+
and not merge_last[i - 1]
|
724 |
+
):
|
725 |
+
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
726 |
+
if (
|
727 |
+
not self._is_reduplication(seg[i - 1][0])
|
728 |
+
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
729 |
+
):
|
730 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
731 |
+
merge_last[i] = True
|
732 |
+
else:
|
733 |
+
new_seg.append([word, pos])
|
734 |
+
else:
|
735 |
+
new_seg.append([word, pos])
|
736 |
+
return new_seg
|
737 |
+
|
738 |
+
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
739 |
+
new_seg = []
|
740 |
+
for i, (word, pos) in enumerate(seg):
|
741 |
+
if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
|
742 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
743 |
+
else:
|
744 |
+
new_seg.append([word, pos])
|
745 |
+
return new_seg
|
746 |
+
|
747 |
+
def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
748 |
+
new_seg = []
|
749 |
+
for i, (word, pos) in enumerate(seg):
|
750 |
+
if new_seg and word == new_seg[-1][0]:
|
751 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
752 |
+
else:
|
753 |
+
new_seg.append([word, pos])
|
754 |
+
return new_seg
|
755 |
+
|
756 |
+
def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
757 |
+
seg = self._merge_bu(seg)
|
758 |
+
try:
|
759 |
+
seg = self._merge_yi(seg)
|
760 |
+
except:
|
761 |
+
print("_merge_yi failed")
|
762 |
+
seg = self._merge_reduplication(seg)
|
763 |
+
seg = self._merge_continuous_three_tones(seg)
|
764 |
+
seg = self._merge_continuous_three_tones_2(seg)
|
765 |
+
seg = self._merge_er(seg)
|
766 |
+
return seg
|
767 |
+
|
768 |
+
def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
769 |
+
finals = self._bu_sandhi(word, finals)
|
770 |
+
finals = self._yi_sandhi(word, finals)
|
771 |
+
finals = self._neural_sandhi(word, pos, finals)
|
772 |
+
finals = self._three_sandhi(word, finals)
|
773 |
+
return finals
|