File size: 4,616 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_shrink_map.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper

__all__ = ['MakeShrinkMap']


class MakeShrinkMap(object):
    r'''
    Making binary mask from detection data with ICDAR format.
    Typically following the process of class `MakeICDARData`.
    '''

    def __init__(self, min_text_size=8, shrink_ratio=0.4, **kwargs):
        self.min_text_size = min_text_size
        self.shrink_ratio = shrink_ratio

    def __call__(self, data):
        image = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']

        h, w = image.shape[:2]
        text_polys, ignore_tags = self.validate_polygons(text_polys,
                                                         ignore_tags, h, w)
        gt = np.zeros((h, w), dtype=np.float32)
        mask = np.ones((h, w), dtype=np.float32)
        for i in range(len(text_polys)):
            polygon = text_polys[i]
            height = max(polygon[:, 1]) - min(polygon[:, 1])
            width = max(polygon[:, 0]) - min(polygon[:, 0])
            if ignore_tags[i] or min(height, width) < self.min_text_size:
                cv2.fillPoly(mask,
                             polygon.astype(np.int32)[np.newaxis, :, :], 0)
                ignore_tags[i] = True
            else:
                polygon_shape = Polygon(polygon)
                subject = [tuple(l) for l in polygon]
                padding = pyclipper.PyclipperOffset()
                padding.AddPath(subject, pyclipper.JT_ROUND,
                                pyclipper.ET_CLOSEDPOLYGON)
                shrinked = []

                # Increase the shrink ratio every time we get multiple polygon returned back
                possible_ratios = np.arange(self.shrink_ratio, 1,
                                            self.shrink_ratio)
                np.append(possible_ratios, 1)
                # print(possible_ratios)
                for ratio in possible_ratios:
                    # print(f"Change shrink ratio to {ratio}")
                    distance = polygon_shape.area * (
                        1 - np.power(ratio, 2)) / polygon_shape.length
                    shrinked = padding.Execute(-distance)
                    if len(shrinked) == 1:
                        break

                if shrinked == []:
                    cv2.fillPoly(mask,
                                 polygon.astype(np.int32)[np.newaxis, :, :], 0)
                    ignore_tags[i] = True
                    continue

                for each_shirnk in shrinked:
                    shirnk = np.array(each_shirnk).reshape(-1, 2)
                    cv2.fillPoly(gt, [shirnk.astype(np.int32)], 1)

        data['shrink_map'] = gt
        data['shrink_mask'] = mask
        return data

    def validate_polygons(self, polygons, ignore_tags, h, w):
        '''
        polygons (numpy.array, required): of shape (num_instances, num_points, 2)
        '''
        if len(polygons) == 0:
            return polygons, ignore_tags
        assert len(polygons) == len(ignore_tags)
        for polygon in polygons:
            polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
            polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)

        for i in range(len(polygons)):
            area = self.polygon_area(polygons[i])
            if abs(area) < 1:
                ignore_tags[i] = True
            if area > 0:
                polygons[i] = polygons[i][::-1, :]
        return polygons, ignore_tags

    def polygon_area(self, polygon):
        """
        compute polygon area
        """
        area = 0
        q = polygon[-1]
        for p in polygon:
            area += p[0] * q[1] - p[1] * q[0]
            q = p
        return area / 2.0