File size: 5,841 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

__all__ = ['DetMetric', 'DetFCEMetric']

from .eval_det_iou import DetectionIoUEvaluator


class DetMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.evaluator = DetectionIoUEvaluator()
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        '''
       batch: a list produced by dataloaders.
           image: np.ndarray  of shape (N, C, H, W).
           ratio_list: np.ndarray  of shape(N,2)
           polygons: np.ndarray  of shape (N, K, 4, 2), the polygons of objective regions.
           ignore_tags: np.ndarray  of shape (N, K), indicates whether a region is ignorable or not.
       preds: a list of dict produced by post process
            points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
       '''
        gt_polyons_batch = batch[2]
        ignore_tags_batch = batch[3]
        for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
                                                 ignore_tags_batch):
            # prepare gt
            gt_info_list = [{
                'points': gt_polyon,
                'text': '',
                'ignore': ignore_tag
            } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
            # prepare det
            det_info_list = [{
                'points': det_polyon,
                'text': ''
            } for det_polyon in pred['points']]
            result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
            self.results.append(result)

    def get_metric(self):
        """
        return metrics {
                 'precision': 0,
                 'recall': 0,
                 'hmean': 0
            }
        """

        metrics = self.evaluator.combine_results(self.results)
        self.reset()
        return metrics

    def reset(self):
        self.results = []  # clear results


class DetFCEMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.evaluator = DetectionIoUEvaluator()
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        '''
       batch: a list produced by dataloaders.
           image: np.ndarray  of shape (N, C, H, W).
           ratio_list: np.ndarray  of shape(N,2)
           polygons: np.ndarray  of shape (N, K, 4, 2), the polygons of objective regions.
           ignore_tags: np.ndarray  of shape (N, K), indicates whether a region is ignorable or not.
       preds: a list of dict produced by post process
            points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
       '''
        gt_polyons_batch = batch[2]
        ignore_tags_batch = batch[3]

        for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
                                                 ignore_tags_batch):
            # prepare gt
            gt_info_list = [{
                'points': gt_polyon,
                'text': '',
                'ignore': ignore_tag
            } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
            # prepare det
            det_info_list = [{
                'points': det_polyon,
                'text': '',
                'score': score
            } for det_polyon, score in zip(pred['points'], pred['scores'])]

            for score_thr in self.results.keys():
                det_info_list_thr = [
                    det_info for det_info in det_info_list
                    if det_info['score'] >= score_thr
                ]
                result = self.evaluator.evaluate_image(gt_info_list,
                                                       det_info_list_thr)
                self.results[score_thr].append(result)

    def get_metric(self):
        """
        return metrics {'heman':0,
            'thr 0.3':'precision: 0 recall: 0 hmean: 0',
            'thr 0.4':'precision: 0 recall: 0 hmean: 0',
            'thr 0.5':'precision: 0 recall: 0 hmean: 0',
            'thr 0.6':'precision: 0 recall: 0 hmean: 0',
            'thr 0.7':'precision: 0 recall: 0 hmean: 0',
            'thr 0.8':'precision: 0 recall: 0 hmean: 0',
            'thr 0.9':'precision: 0 recall: 0 hmean: 0',
            }
        """
        metrics = {}
        hmean = 0
        for score_thr in self.results.keys():
            metric = self.evaluator.combine_results(self.results[score_thr])
            # for key, value in metric.items():
            #     metrics['{}_{}'.format(key, score_thr)] = value
            metric_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
                metric['precision'], metric['recall'], metric['hmean'])
            metrics['thr {}'.format(score_thr)] = metric_str
            hmean = max(hmean, metric['hmean'])
        metrics['hmean'] = hmean

        self.reset()
        return metrics

    def reset(self):
        self.results = {
            0.3: [],
            0.4: [],
            0.5: [],
            0.6: [],
            0.7: [],
            0.8: [],
            0.9: []
        }  # clear results