File size: 16,052 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/local_graph.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
import paddle.nn as nn
from ppocr.ext_op import RoIAlignRotated


def normalize_adjacent_matrix(A):
    assert A.ndim == 2
    assert A.shape[0] == A.shape[1]

    A = A + np.eye(A.shape[0])
    d = np.sum(A, axis=0)
    d = np.clip(d, 0, None)
    d_inv = np.power(d, -0.5).flatten()
    d_inv[np.isinf(d_inv)] = 0.0
    d_inv = np.diag(d_inv)
    G = A.dot(d_inv).transpose().dot(d_inv)
    return G


def euclidean_distance_matrix(A, B):
    """Calculate the Euclidean distance matrix.

    Args:
        A (ndarray): The point sequence.
        B (ndarray): The point sequence with the same dimensions as A.

    returns:
        D (ndarray): The Euclidean distance matrix.
    """
    assert A.ndim == 2
    assert B.ndim == 2
    assert A.shape[1] == B.shape[1]

    m = A.shape[0]
    n = B.shape[0]

    A_dots = (A * A).sum(axis=1).reshape((m, 1)) * np.ones(shape=(1, n))
    B_dots = (B * B).sum(axis=1) * np.ones(shape=(m, 1))
    D_squared = A_dots + B_dots - 2 * A.dot(B.T)

    zero_mask = np.less(D_squared, 0.0)
    D_squared[zero_mask] = 0.0
    D = np.sqrt(D_squared)
    return D


def feature_embedding(input_feats, out_feat_len):
    """Embed features. This code was partially adapted from
    https://github.com/GXYM/DRRG licensed under the MIT license.

    Args:
        input_feats (ndarray): The input features of shape (N, d), where N is
            the number of nodes in graph, d is the input feature vector length.
        out_feat_len (int): The length of output feature vector.

    Returns:
        embedded_feats (ndarray): The embedded features.
    """
    assert input_feats.ndim == 2
    assert isinstance(out_feat_len, int)
    assert out_feat_len >= input_feats.shape[1]

    num_nodes = input_feats.shape[0]
    feat_dim = input_feats.shape[1]
    feat_repeat_times = out_feat_len // feat_dim
    residue_dim = out_feat_len % feat_dim

    if residue_dim > 0:
        embed_wave = np.array([
            np.power(1000, 2.0 * (j // 2) / feat_repeat_times + 1)
            for j in range(feat_repeat_times + 1)
        ]).reshape((feat_repeat_times + 1, 1, 1))
        repeat_feats = np.repeat(
            np.expand_dims(
                input_feats, axis=0), feat_repeat_times, axis=0)
        residue_feats = np.hstack([
            input_feats[:, 0:residue_dim], np.zeros(
                (num_nodes, feat_dim - residue_dim))
        ])
        residue_feats = np.expand_dims(residue_feats, axis=0)
        repeat_feats = np.concatenate([repeat_feats, residue_feats], axis=0)
        embedded_feats = repeat_feats / embed_wave
        embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
        embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
        embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
            (num_nodes, -1))[:, 0:out_feat_len]
    else:
        embed_wave = np.array([
            np.power(1000, 2.0 * (j // 2) / feat_repeat_times)
            for j in range(feat_repeat_times)
        ]).reshape((feat_repeat_times, 1, 1))
        repeat_feats = np.repeat(
            np.expand_dims(
                input_feats, axis=0), feat_repeat_times, axis=0)
        embedded_feats = repeat_feats / embed_wave
        embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
        embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
        embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
            (num_nodes, -1)).astype(np.float32)

    return embedded_feats


class LocalGraphs:
    def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
                 pooling_scale, pooling_output_size, local_graph_thr):

        assert len(k_at_hops) == 2
        assert all(isinstance(n, int) for n in k_at_hops)
        assert isinstance(num_adjacent_linkages, int)
        assert isinstance(node_geo_feat_len, int)
        assert isinstance(pooling_scale, float)
        assert all(isinstance(n, int) for n in pooling_output_size)
        assert isinstance(local_graph_thr, float)

        self.k_at_hops = k_at_hops
        self.num_adjacent_linkages = num_adjacent_linkages
        self.node_geo_feat_dim = node_geo_feat_len
        self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
        self.local_graph_thr = local_graph_thr

    def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels):
        """Generate local graphs for GCN to predict which instance a text
        component belongs to.

        Args:
            sorted_dist_inds (ndarray): The complete graph node indices, which
                is sorted according to the Euclidean distance.
            gt_comp_labels(ndarray): The ground truth labels define the
                instance to which the text components (nodes in graphs) belong.

        Returns:
            pivot_local_graphs(list[list[int]]): The list of local graph
                neighbor indices of pivots.
            pivot_knns(list[list[int]]): The list of k-nearest neighbor indices
                of pivots.
        """

        assert sorted_dist_inds.ndim == 2
        assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
                gt_comp_labels.shape[0])

        knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
        pivot_local_graphs = []
        pivot_knns = []
        for pivot_ind, knn in enumerate(knn_graph):

            local_graph_neighbors = set(knn)

            for neighbor_ind in knn:
                local_graph_neighbors.update(
                    set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] +
                                         1]))

            local_graph_neighbors.discard(pivot_ind)
            pivot_local_graph = list(local_graph_neighbors)
            pivot_local_graph.insert(0, pivot_ind)
            pivot_knn = [pivot_ind] + list(knn)

            if pivot_ind < 1:
                pivot_local_graphs.append(pivot_local_graph)
                pivot_knns.append(pivot_knn)
            else:
                add_flag = True
                for graph_ind, added_knn in enumerate(pivot_knns):
                    added_pivot_ind = added_knn[0]
                    added_local_graph = pivot_local_graphs[graph_ind]

                    union = len(
                        set(pivot_local_graph[1:]).union(
                            set(added_local_graph[1:])))
                    intersect = len(
                        set(pivot_local_graph[1:]).intersection(
                            set(added_local_graph[1:])))
                    local_graph_iou = intersect / (union + 1e-8)

                    if (local_graph_iou > self.local_graph_thr and
                            pivot_ind in added_knn and
                            gt_comp_labels[added_pivot_ind] ==
                            gt_comp_labels[pivot_ind] and
                            gt_comp_labels[pivot_ind] != 0):
                        add_flag = False
                        break
                if add_flag:
                    pivot_local_graphs.append(pivot_local_graph)
                    pivot_knns.append(pivot_knn)

        return pivot_local_graphs, pivot_knns

    def generate_gcn_input(self, node_feat_batch, node_label_batch,
                           local_graph_batch, knn_batch, sorted_dist_ind_batch):
        """Generate graph convolution network input data.

        Args:
            node_feat_batch (List[Tensor]): The batched graph node features.
            node_label_batch (List[ndarray]): The batched text component
                labels.
            local_graph_batch (List[List[list[int]]]): The local graph node
                indices of image batch.
            knn_batch (List[List[list[int]]]): The knn graph node indices of
                image batch.
            sorted_dist_ind_batch (list[ndarray]): The node indices sorted
                according to the Euclidean distance.

        Returns:
            local_graphs_node_feat (Tensor): The node features of graph.
            adjacent_matrices (Tensor): The adjacent matrices of local graphs.
            pivots_knn_inds (Tensor): The k-nearest neighbor indices in
                local graph.
            gt_linkage (Tensor): The surpervision signal of GCN for linkage
                prediction.
        """
        assert isinstance(node_feat_batch, list)
        assert isinstance(node_label_batch, list)
        assert isinstance(local_graph_batch, list)
        assert isinstance(knn_batch, list)
        assert isinstance(sorted_dist_ind_batch, list)

        num_max_nodes = max([
            len(pivot_local_graph)
            for pivot_local_graphs in local_graph_batch
            for pivot_local_graph in pivot_local_graphs
        ])

        local_graphs_node_feat = []
        adjacent_matrices = []
        pivots_knn_inds = []
        pivots_gt_linkage = []

        for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch):
            node_feats = node_feat_batch[batch_ind]
            pivot_local_graphs = local_graph_batch[batch_ind]
            pivot_knns = knn_batch[batch_ind]
            node_labels = node_label_batch[batch_ind]

            for graph_ind, pivot_knn in enumerate(pivot_knns):
                pivot_local_graph = pivot_local_graphs[graph_ind]
                num_nodes = len(pivot_local_graph)
                pivot_ind = pivot_local_graph[0]
                node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}

                knn_inds = paddle.to_tensor(
                    [node2ind_map[i] for i in pivot_knn[1:]])
                pivot_feats = node_feats[pivot_ind]
                normalized_feats = node_feats[paddle.to_tensor(
                    pivot_local_graph)] - pivot_feats

                adjacent_matrix = np.zeros(
                    (num_nodes, num_nodes), dtype=np.float32)
                for node in pivot_local_graph:
                    neighbors = sorted_dist_inds[node, 1:
                                                 self.num_adjacent_linkages + 1]
                    for neighbor in neighbors:
                        if neighbor in pivot_local_graph:

                            adjacent_matrix[node2ind_map[node], node2ind_map[
                                neighbor]] = 1
                            adjacent_matrix[node2ind_map[neighbor],
                                            node2ind_map[node]] = 1

                adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
                pad_adjacent_matrix = paddle.zeros(
                    (num_max_nodes, num_max_nodes))
                pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast(
                    paddle.to_tensor(adjacent_matrix), 'float32')

                pad_normalized_feats = paddle.concat(
                    [
                        normalized_feats, paddle.zeros(
                            (num_max_nodes - num_nodes,
                             normalized_feats.shape[1]))
                    ],
                    axis=0)
                local_graph_labels = node_labels[pivot_local_graph]
                knn_labels = local_graph_labels[knn_inds.numpy()]
                link_labels = ((node_labels[pivot_ind] == knn_labels) &
                               (node_labels[pivot_ind] > 0)).astype(np.int64)
                link_labels = paddle.to_tensor(link_labels)

                local_graphs_node_feat.append(pad_normalized_feats)
                adjacent_matrices.append(pad_adjacent_matrix)
                pivots_knn_inds.append(knn_inds)
                pivots_gt_linkage.append(link_labels)

        local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0)
        adjacent_matrices = paddle.stack(adjacent_matrices, 0)
        pivots_knn_inds = paddle.stack(pivots_knn_inds, 0)
        pivots_gt_linkage = paddle.stack(pivots_gt_linkage, 0)

        return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
                pivots_gt_linkage)

    def __call__(self, feat_maps, comp_attribs):
        """Generate local graphs as GCN input.

        Args:
            feat_maps (Tensor): The feature maps to extract the content
                features of text components.
            comp_attribs (ndarray): The text component attributes.

        Returns:
            local_graphs_node_feat (Tensor): The node features of graph.
            adjacent_matrices (Tensor): The adjacent matrices of local graphs.
            pivots_knn_inds (Tensor): The k-nearest neighbor indices in local
                graph.
            gt_linkage (Tensor): The surpervision signal of GCN for linkage
                prediction.
        """

        assert isinstance(feat_maps, paddle.Tensor)
        assert comp_attribs.ndim == 3
        assert comp_attribs.shape[2] == 8

        sorted_dist_inds_batch = []
        local_graph_batch = []
        knn_batch = []
        node_feat_batch = []
        node_label_batch = []

        for batch_ind in range(comp_attribs.shape[0]):
            num_comps = int(comp_attribs[batch_ind, 0, 0])
            comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7]
            node_labels = comp_attribs[batch_ind, :num_comps, 7].astype(
                np.int32)

            comp_centers = comp_geo_attribs[:, 0:2]
            distance_matrix = euclidean_distance_matrix(comp_centers,
                                                        comp_centers)

            batch_id = np.zeros(
                (comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind
            comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1)
            angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign(
                comp_geo_attribs[:, -1])
            angle = angle.reshape((-1, 1))
            rotated_rois = np.hstack(
                [batch_id, comp_geo_attribs[:, :-2], angle])
            rois = paddle.to_tensor(rotated_rois)
            content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0),
                                         rois)

            content_feats = content_feats.reshape([content_feats.shape[0], -1])
            geo_feats = feature_embedding(comp_geo_attribs,
                                          self.node_geo_feat_dim)
            geo_feats = paddle.to_tensor(geo_feats)
            node_feats = paddle.concat([content_feats, geo_feats], axis=-1)

            sorted_dist_inds = np.argsort(distance_matrix, axis=1)
            pivot_local_graphs, pivot_knns = self.generate_local_graphs(
                sorted_dist_inds, node_labels)

            node_feat_batch.append(node_feats)
            node_label_batch.append(node_labels)
            local_graph_batch.append(pivot_local_graphs)
            knn_batch.append(pivot_knns)
            sorted_dist_inds_batch.append(sorted_dist_inds)

        (node_feats, adjacent_matrices, knn_inds, gt_linkage) = \
            self.generate_gcn_input(node_feat_batch,
                                    node_label_batch,
                                    local_graph_batch,
                                    knn_batch,
                                    sorted_dist_inds_batch)

        return node_feats, adjacent_matrices, knn_inds, gt_linkage