File size: 15,840 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/attention_recognition_head.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

import paddle
from paddle import nn
from paddle.nn import functional as F


class AsterHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 sDim,
                 attDim,
                 max_len_labels,
                 time_step=25,
                 beam_width=5,
                 **kwargs):
        super(AsterHead, self).__init__()
        self.num_classes = out_channels
        self.in_planes = in_channels
        self.sDim = sDim
        self.attDim = attDim
        self.max_len_labels = max_len_labels
        self.decoder = AttentionRecognitionHead(in_channels, out_channels, sDim,
                                                attDim, max_len_labels)
        self.time_step = time_step
        self.embeder = Embedding(self.time_step, in_channels)
        self.beam_width = beam_width
        self.eos = self.num_classes - 3

    def forward(self, x, targets=None, embed=None):
        return_dict = {}
        embedding_vectors = self.embeder(x)

        if self.training:
            rec_targets, rec_lengths, _ = targets
            rec_pred = self.decoder([x, rec_targets, rec_lengths],
                                    embedding_vectors)
            return_dict['rec_pred'] = rec_pred
            return_dict['embedding_vectors'] = embedding_vectors
        else:
            rec_pred, rec_pred_scores = self.decoder.beam_search(
                x, self.beam_width, self.eos, embedding_vectors)
            return_dict['rec_pred'] = rec_pred
            return_dict['rec_pred_scores'] = rec_pred_scores
            return_dict['embedding_vectors'] = embedding_vectors

        return return_dict


class Embedding(nn.Layer):
    def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
        super(Embedding, self).__init__()
        self.in_timestep = in_timestep
        self.in_planes = in_planes
        self.embed_dim = embed_dim
        self.mid_dim = mid_dim
        self.eEmbed = nn.Linear(
            in_timestep * in_planes,
            self.embed_dim)  # Embed encoder output to a word-embedding like

    def forward(self, x):
        x = paddle.reshape(x, [paddle.shape(x)[0], -1])
        x = self.eEmbed(x)
        return x


class AttentionRecognitionHead(nn.Layer):
    """
  input: [b x 16 x 64 x in_planes]
  output: probability sequence: [b x T x num_classes]
  """

    def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):
        super(AttentionRecognitionHead, self).__init__()
        self.num_classes = out_channels  # this is the output classes. So it includes the <EOS>.
        self.in_planes = in_channels
        self.sDim = sDim
        self.attDim = attDim
        self.max_len_labels = max_len_labels

        self.decoder = DecoderUnit(
            sDim=sDim, xDim=in_channels, yDim=self.num_classes, attDim=attDim)

    def forward(self, x, embed):
        x, targets, lengths = x
        batch_size = paddle.shape(x)[0]
        # Decoder
        state = self.decoder.get_initial_state(embed)
        outputs = []
        for i in range(max(lengths)):
            if i == 0:
                y_prev = paddle.full(
                    shape=[batch_size], fill_value=self.num_classes)
            else:
                y_prev = targets[:, i - 1]
            output, state = self.decoder(x, state, y_prev)
            outputs.append(output)
        outputs = paddle.concat([_.unsqueeze(1) for _ in outputs], 1)
        return outputs

    # inference stage.
    def sample(self, x):
        x, _, _ = x
        batch_size = x.size(0)
        # Decoder
        state = paddle.zeros([1, batch_size, self.sDim])

        predicted_ids, predicted_scores = [], []
        for i in range(self.max_len_labels):
            if i == 0:
                y_prev = paddle.full(
                    shape=[batch_size], fill_value=self.num_classes)
            else:
                y_prev = predicted

            output, state = self.decoder(x, state, y_prev)
            output = F.softmax(output, axis=1)
            score, predicted = output.max(1)
            predicted_ids.append(predicted.unsqueeze(1))
            predicted_scores.append(score.unsqueeze(1))
        predicted_ids = paddle.concat([predicted_ids, 1])
        predicted_scores = paddle.concat([predicted_scores, 1])
        # return predicted_ids.squeeze(), predicted_scores.squeeze()
        return predicted_ids, predicted_scores

    def beam_search(self, x, beam_width, eos, embed):
        def _inflate(tensor, times, dim):
            repeat_dims = [1] * tensor.dim()
            repeat_dims[dim] = times
            output = paddle.tile(tensor, repeat_dims)
            return output

        # https://github.com/IBM/pytorch-seq2seq/blob/fede87655ddce6c94b38886089e05321dc9802af/seq2seq/models/TopKDecoder.py
        batch_size, l, d = x.shape
        x = paddle.tile(
            paddle.transpose(
                x.unsqueeze(1), perm=[1, 0, 2, 3]), [beam_width, 1, 1, 1])
        inflated_encoder_feats = paddle.reshape(
            paddle.transpose(
                x, perm=[1, 0, 2, 3]), [-1, l, d])

        # Initialize the decoder
        state = self.decoder.get_initial_state(embed, tile_times=beam_width)

        pos_index = paddle.reshape(
            paddle.arange(batch_size) * beam_width, shape=[-1, 1])

        # Initialize the scores
        sequence_scores = paddle.full(
            shape=[batch_size * beam_width, 1], fill_value=-float('Inf'))
        index = [i * beam_width for i in range(0, batch_size)]
        sequence_scores[index] = 0.0

        # Initialize the input vector
        y_prev = paddle.full(
            shape=[batch_size * beam_width], fill_value=self.num_classes)

        # Store decisions for backtracking
        stored_scores = list()
        stored_predecessors = list()
        stored_emitted_symbols = list()

        for i in range(self.max_len_labels):
            output, state = self.decoder(inflated_encoder_feats, state, y_prev)
            state = paddle.unsqueeze(state, axis=0)
            log_softmax_output = paddle.nn.functional.log_softmax(
                output, axis=1)

            sequence_scores = _inflate(sequence_scores, self.num_classes, 1)
            sequence_scores += log_softmax_output
            scores, candidates = paddle.topk(
                paddle.reshape(sequence_scores, [batch_size, -1]),
                beam_width,
                axis=1)

            # Reshape input = (bk, 1) and sequence_scores = (bk, 1)
            y_prev = paddle.reshape(
                candidates % self.num_classes, shape=[batch_size * beam_width])
            sequence_scores = paddle.reshape(
                scores, shape=[batch_size * beam_width, 1])

            # Update fields for next timestep
            pos_index = paddle.expand_as(pos_index, candidates)
            predecessors = paddle.cast(
                candidates / self.num_classes + pos_index, dtype='int64')
            predecessors = paddle.reshape(
                predecessors, shape=[batch_size * beam_width, 1])
            state = paddle.index_select(
                state, index=predecessors.squeeze(), axis=1)

            # Update sequence socres and erase scores for <eos> symbol so that they aren't expanded
            stored_scores.append(sequence_scores.clone())
            y_prev = paddle.reshape(y_prev, shape=[-1, 1])
            eos_prev = paddle.full_like(y_prev, fill_value=eos)
            mask = eos_prev == y_prev
            mask = paddle.nonzero(mask)
            if mask.dim() > 0:
                sequence_scores = sequence_scores.numpy()
                mask = mask.numpy()
                sequence_scores[mask] = -float('inf')
                sequence_scores = paddle.to_tensor(sequence_scores)

            # Cache results for backtracking
            stored_predecessors.append(predecessors)
            y_prev = paddle.squeeze(y_prev)
            stored_emitted_symbols.append(y_prev)

        # Do backtracking to return the optimal values
        #====== backtrak ======#
        # Initialize return variables given different types
        p = list()
        l = [[self.max_len_labels] * beam_width for _ in range(batch_size)
             ]  # Placeholder for lengths of top-k sequences

        # the last step output of the beams are not sorted
        # thus they are sorted here
        sorted_score, sorted_idx = paddle.topk(
            paddle.reshape(
                stored_scores[-1], shape=[batch_size, beam_width]),
            beam_width)

        # initialize the sequence scores with the sorted last step beam scores
        s = sorted_score.clone()

        batch_eos_found = [0] * batch_size  # the number of EOS found
        # in the backward loop below for each batch
        t = self.max_len_labels - 1
        # initialize the back pointer with the sorted order of the last step beams.
        # add pos_index for indexing variable with b*k as the first dimension.
        t_predecessors = paddle.reshape(
            sorted_idx + pos_index.expand_as(sorted_idx),
            shape=[batch_size * beam_width])
        while t >= 0:
            # Re-order the variables with the back pointer
            current_symbol = paddle.index_select(
                stored_emitted_symbols[t], index=t_predecessors, axis=0)
            t_predecessors = paddle.index_select(
                stored_predecessors[t].squeeze(), index=t_predecessors, axis=0)
            eos_indices = stored_emitted_symbols[t] == eos
            eos_indices = paddle.nonzero(eos_indices)

            if eos_indices.dim() > 0:
                for i in range(eos_indices.shape[0] - 1, -1, -1):
                    # Indices of the EOS symbol for both variables
                    # with b*k as the first dimension, and b, k for
                    # the first two dimensions
                    idx = eos_indices[i]
                    b_idx = int(idx[0] / beam_width)
                    # The indices of the replacing position
                    # according to the replacement strategy noted above
                    res_k_idx = beam_width - (batch_eos_found[b_idx] %
                                              beam_width) - 1
                    batch_eos_found[b_idx] += 1
                    res_idx = b_idx * beam_width + res_k_idx

                    # Replace the old information in return variables
                    # with the new ended sequence information
                    t_predecessors[res_idx] = stored_predecessors[t][idx[0]]
                    current_symbol[res_idx] = stored_emitted_symbols[t][idx[0]]
                    s[b_idx, res_k_idx] = stored_scores[t][idx[0], 0]
                    l[b_idx][res_k_idx] = t + 1

            # record the back tracked results
            p.append(current_symbol)
            t -= 1

        # Sort and re-order again as the added ended sequences may change
        # the order (very unlikely)
        s, re_sorted_idx = s.topk(beam_width)
        for b_idx in range(batch_size):
            l[b_idx] = [
                l[b_idx][k_idx.item()] for k_idx in re_sorted_idx[b_idx, :]
            ]

        re_sorted_idx = paddle.reshape(
            re_sorted_idx + pos_index.expand_as(re_sorted_idx),
            [batch_size * beam_width])

        # Reverse the sequences and re-order at the same time
        # It is reversed because the backtracking happens in reverse time order
        p = [
            paddle.reshape(
                paddle.index_select(step, re_sorted_idx, 0),
                shape=[batch_size, beam_width, -1]) for step in reversed(p)
        ]
        p = paddle.concat(p, -1)[:, 0, :]
        return p, paddle.ones_like(p)


class AttentionUnit(nn.Layer):
    def __init__(self, sDim, xDim, attDim):
        super(AttentionUnit, self).__init__()

        self.sDim = sDim
        self.xDim = xDim
        self.attDim = attDim

        self.sEmbed = nn.Linear(sDim, attDim)
        self.xEmbed = nn.Linear(xDim, attDim)
        self.wEmbed = nn.Linear(attDim, 1)

    def forward(self, x, sPrev):
        batch_size, T, _ = x.shape  # [b x T x xDim]
        x = paddle.reshape(x, [-1, self.xDim])  # [(b x T) x xDim]
        xProj = self.xEmbed(x)  # [(b x T) x attDim]
        xProj = paddle.reshape(xProj, [batch_size, T, -1])  # [b x T x attDim]

        sPrev = sPrev.squeeze(0)
        sProj = self.sEmbed(sPrev)  # [b x attDim]
        sProj = paddle.unsqueeze(sProj, 1)  # [b x 1 x attDim]
        sProj = paddle.expand(sProj,
                              [batch_size, T, self.attDim])  # [b x T x attDim]

        sumTanh = paddle.tanh(sProj + xProj)
        sumTanh = paddle.reshape(sumTanh, [-1, self.attDim])

        vProj = self.wEmbed(sumTanh)  # [(b x T) x 1]
        vProj = paddle.reshape(vProj, [batch_size, T])
        alpha = F.softmax(
            vProj, axis=1)  # attention weights for each sample in the minibatch
        return alpha


class DecoderUnit(nn.Layer):
    def __init__(self, sDim, xDim, yDim, attDim):
        super(DecoderUnit, self).__init__()
        self.sDim = sDim
        self.xDim = xDim
        self.yDim = yDim
        self.attDim = attDim
        self.emdDim = attDim

        self.attention_unit = AttentionUnit(sDim, xDim, attDim)
        self.tgt_embedding = nn.Embedding(
            yDim + 1, self.emdDim, weight_attr=nn.initializer.Normal(
                std=0.01))  # the last is used for <BOS>
        self.gru = nn.GRUCell(input_size=xDim + self.emdDim, hidden_size=sDim)
        self.fc = nn.Linear(
            sDim,
            yDim,
            weight_attr=nn.initializer.Normal(std=0.01),
            bias_attr=nn.initializer.Constant(value=0))
        self.embed_fc = nn.Linear(300, self.sDim)

    def get_initial_state(self, embed, tile_times=1):
        assert embed.shape[1] == 300
        state = self.embed_fc(embed)  # N * sDim
        if tile_times != 1:
            state = state.unsqueeze(1)
            trans_state = paddle.transpose(state, perm=[1, 0, 2])
            state = paddle.tile(trans_state, repeat_times=[tile_times, 1, 1])
            trans_state = paddle.transpose(state, perm=[1, 0, 2])
            state = paddle.reshape(trans_state, shape=[-1, self.sDim])
        state = state.unsqueeze(0)  # 1 * N * sDim
        return state

    def forward(self, x, sPrev, yPrev):
        # x: feature sequence from the image decoder.
        batch_size, T, _ = x.shape
        alpha = self.attention_unit(x, sPrev)
        context = paddle.squeeze(paddle.matmul(alpha.unsqueeze(1), x), axis=1)
        yPrev = paddle.cast(yPrev, dtype="int64")
        yProj = self.tgt_embedding(yPrev)

        concat_context = paddle.concat([yProj, context], 1)
        concat_context = paddle.squeeze(concat_context, 1)
        sPrev = paddle.squeeze(sPrev, 0)
        output, state = self.gru(concat_context, sPrev)
        output = paddle.squeeze(output, axis=1)
        output = self.fc(output)
        return output, state