File size: 10,812 Bytes
a89d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
from .self_attention import WrapEncoderForFeature
from .self_attention import WrapEncoder
from paddle.static import Program
from ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
from collections import OrderedDict
gradient_clip = 10
class PVAM(nn.Layer):
def __init__(self, in_channels, char_num, max_text_length, num_heads,
num_encoder_tus, hidden_dims):
super(PVAM, self).__init__()
self.char_num = char_num
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_tus
self.hidden_dims = hidden_dims
# Transformer encoder
t = 256
c = 512
self.wrap_encoder_for_feature = WrapEncoderForFeature(
src_vocab_size=1,
max_length=t,
n_layer=self.num_encoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
# PVAM
self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
self.fc0 = paddle.nn.Linear(
in_features=in_channels,
out_features=in_channels, )
self.emb = paddle.nn.Embedding(
num_embeddings=self.max_length, embedding_dim=in_channels)
self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
self.fc1 = paddle.nn.Linear(
in_features=in_channels, out_features=1, bias_attr=False)
def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
b, c, h, w = inputs.shape
conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
# transformer encoder
b, t, c = conv_features.shape
enc_inputs = [conv_features, encoder_word_pos, None]
word_features = self.wrap_encoder_for_feature(enc_inputs)
# pvam
b, t, c = word_features.shape
word_features = self.fc0(word_features)
word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
word_pos_feature = self.emb(gsrm_word_pos)
word_pos_feature_ = paddle.reshape(word_pos_feature,
[-1, self.max_length, 1, c])
word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
y = word_pos_feature_ + word_features_
y = F.tanh(y)
attention_weight = self.fc1(y)
attention_weight = paddle.reshape(
attention_weight, shape=[-1, self.max_length, t])
attention_weight = F.softmax(attention_weight, axis=-1)
pvam_features = paddle.matmul(attention_weight,
word_features) #[b, max_length, c]
return pvam_features
class GSRM(nn.Layer):
def __init__(self, in_channels, char_num, max_text_length, num_heads,
num_encoder_tus, num_decoder_tus, hidden_dims):
super(GSRM, self).__init__()
self.char_num = char_num
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_tus
self.num_decoder_TUs = num_decoder_tus
self.hidden_dims = hidden_dims
self.fc0 = paddle.nn.Linear(
in_features=in_channels, out_features=self.char_num)
self.wrap_encoder0 = WrapEncoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
self.wrap_encoder1 = WrapEncoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
self.mul = lambda x: paddle.matmul(x=x,
y=self.wrap_encoder0.prepare_decoder.emb0.weight,
transpose_y=True)
def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2):
# ===== GSRM Visual-to-semantic embedding block =====
b, t, c = inputs.shape
pvam_features = paddle.reshape(inputs, [-1, c])
word_out = self.fc0(pvam_features)
word_ids = paddle.argmax(F.softmax(word_out), axis=1)
word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
#===== GSRM Semantic reasoning block =====
"""
This module is achieved through bi-transformers,
ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
"""
pad_idx = self.char_num
word1 = paddle.cast(word_ids, "float32")
word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
word1 = paddle.cast(word1, "int64")
word1 = word1[:, :-1, :]
word2 = word_ids
enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
value=0.,
data_format="NLC")
gsrm_feature2 = gsrm_feature2[:, 1:, ]
gsrm_features = gsrm_feature1 + gsrm_feature2
gsrm_out = self.mul(gsrm_features)
b, t, c = gsrm_out.shape
gsrm_out = paddle.reshape(gsrm_out, [-1, c])
return gsrm_features, word_out, gsrm_out
class VSFD(nn.Layer):
def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
super(VSFD, self).__init__()
self.char_num = char_num
self.fc0 = paddle.nn.Linear(
in_features=in_channels * 2, out_features=pvam_ch)
self.fc1 = paddle.nn.Linear(
in_features=pvam_ch, out_features=self.char_num)
def forward(self, pvam_feature, gsrm_feature):
b, t, c1 = pvam_feature.shape
b, t, c2 = gsrm_feature.shape
combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
img_comb_feature_ = paddle.reshape(
combine_feature_, shape=[-1, c1 + c2])
img_comb_feature_map = self.fc0(img_comb_feature_)
img_comb_feature_map = F.sigmoid(img_comb_feature_map)
img_comb_feature_map = paddle.reshape(
img_comb_feature_map, shape=[-1, t, c1])
combine_feature = img_comb_feature_map * pvam_feature + (
1.0 - img_comb_feature_map) * gsrm_feature
img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
out = self.fc1(img_comb_feature)
return out
class SRNHead(nn.Layer):
def __init__(self, in_channels, out_channels, max_text_length, num_heads,
num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
super(SRNHead, self).__init__()
self.char_num = out_channels
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_TUs
self.num_decoder_TUs = num_decoder_TUs
self.hidden_dims = hidden_dims
self.pvam = PVAM(
in_channels=in_channels,
char_num=self.char_num,
max_text_length=self.max_length,
num_heads=self.num_heads,
num_encoder_tus=self.num_encoder_TUs,
hidden_dims=self.hidden_dims)
self.gsrm = GSRM(
in_channels=in_channels,
char_num=self.char_num,
max_text_length=self.max_length,
num_heads=self.num_heads,
num_encoder_tus=self.num_encoder_TUs,
num_decoder_tus=self.num_decoder_TUs,
hidden_dims=self.hidden_dims)
self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)
self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
def forward(self, inputs, targets=None):
others = targets[-4:]
encoder_word_pos = others[0]
gsrm_word_pos = others[1]
gsrm_slf_attn_bias1 = others[2]
gsrm_slf_attn_bias2 = others[3]
pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
gsrm_feature, word_out, gsrm_out = self.gsrm(
pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
final_out = self.vsfd(pvam_feature, gsrm_feature)
if not self.training:
final_out = F.softmax(final_out, axis=1)
_, decoded_out = paddle.topk(final_out, k=1)
predicts = OrderedDict([
('predict', final_out),
('pvam_feature', pvam_feature),
('decoded_out', decoded_out),
('word_out', word_out),
('gsrm_out', gsrm_out),
])
return predicts
|