File size: 10,812 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
from .self_attention import WrapEncoderForFeature
from .self_attention import WrapEncoder
from paddle.static import Program
from ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN

from collections import OrderedDict
gradient_clip = 10


class PVAM(nn.Layer):
    def __init__(self, in_channels, char_num, max_text_length, num_heads,
                 num_encoder_tus, hidden_dims):
        super(PVAM, self).__init__()
        self.char_num = char_num
        self.max_length = max_text_length
        self.num_heads = num_heads
        self.num_encoder_TUs = num_encoder_tus
        self.hidden_dims = hidden_dims
        # Transformer encoder
        t = 256
        c = 512
        self.wrap_encoder_for_feature = WrapEncoderForFeature(
            src_vocab_size=1,
            max_length=t,
            n_layer=self.num_encoder_TUs,
            n_head=self.num_heads,
            d_key=int(self.hidden_dims / self.num_heads),
            d_value=int(self.hidden_dims / self.num_heads),
            d_model=self.hidden_dims,
            d_inner_hid=self.hidden_dims,
            prepostprocess_dropout=0.1,
            attention_dropout=0.1,
            relu_dropout=0.1,
            preprocess_cmd="n",
            postprocess_cmd="da",
            weight_sharing=True)

        # PVAM
        self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
        self.fc0 = paddle.nn.Linear(
            in_features=in_channels,
            out_features=in_channels, )
        self.emb = paddle.nn.Embedding(
            num_embeddings=self.max_length, embedding_dim=in_channels)
        self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
        self.fc1 = paddle.nn.Linear(
            in_features=in_channels, out_features=1, bias_attr=False)

    def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
        b, c, h, w = inputs.shape
        conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
        conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
        # transformer encoder
        b, t, c = conv_features.shape

        enc_inputs = [conv_features, encoder_word_pos, None]
        word_features = self.wrap_encoder_for_feature(enc_inputs)

        # pvam
        b, t, c = word_features.shape
        word_features = self.fc0(word_features)
        word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
        word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
        word_pos_feature = self.emb(gsrm_word_pos)
        word_pos_feature_ = paddle.reshape(word_pos_feature,
                                           [-1, self.max_length, 1, c])
        word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
        y = word_pos_feature_ + word_features_
        y = F.tanh(y)
        attention_weight = self.fc1(y)
        attention_weight = paddle.reshape(
            attention_weight, shape=[-1, self.max_length, t])
        attention_weight = F.softmax(attention_weight, axis=-1)
        pvam_features = paddle.matmul(attention_weight,
                                      word_features)  #[b, max_length, c]
        return pvam_features


class GSRM(nn.Layer):
    def __init__(self, in_channels, char_num, max_text_length, num_heads,
                 num_encoder_tus, num_decoder_tus, hidden_dims):
        super(GSRM, self).__init__()
        self.char_num = char_num
        self.max_length = max_text_length
        self.num_heads = num_heads
        self.num_encoder_TUs = num_encoder_tus
        self.num_decoder_TUs = num_decoder_tus
        self.hidden_dims = hidden_dims

        self.fc0 = paddle.nn.Linear(
            in_features=in_channels, out_features=self.char_num)
        self.wrap_encoder0 = WrapEncoder(
            src_vocab_size=self.char_num + 1,
            max_length=self.max_length,
            n_layer=self.num_decoder_TUs,
            n_head=self.num_heads,
            d_key=int(self.hidden_dims / self.num_heads),
            d_value=int(self.hidden_dims / self.num_heads),
            d_model=self.hidden_dims,
            d_inner_hid=self.hidden_dims,
            prepostprocess_dropout=0.1,
            attention_dropout=0.1,
            relu_dropout=0.1,
            preprocess_cmd="n",
            postprocess_cmd="da",
            weight_sharing=True)

        self.wrap_encoder1 = WrapEncoder(
            src_vocab_size=self.char_num + 1,
            max_length=self.max_length,
            n_layer=self.num_decoder_TUs,
            n_head=self.num_heads,
            d_key=int(self.hidden_dims / self.num_heads),
            d_value=int(self.hidden_dims / self.num_heads),
            d_model=self.hidden_dims,
            d_inner_hid=self.hidden_dims,
            prepostprocess_dropout=0.1,
            attention_dropout=0.1,
            relu_dropout=0.1,
            preprocess_cmd="n",
            postprocess_cmd="da",
            weight_sharing=True)

        self.mul = lambda x: paddle.matmul(x=x,
                                           y=self.wrap_encoder0.prepare_decoder.emb0.weight,
                                           transpose_y=True)

    def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2):
        # ===== GSRM Visual-to-semantic embedding block =====
        b, t, c = inputs.shape
        pvam_features = paddle.reshape(inputs, [-1, c])
        word_out = self.fc0(pvam_features)
        word_ids = paddle.argmax(F.softmax(word_out), axis=1)
        word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])

        #===== GSRM Semantic reasoning block =====
        """
        This module is achieved through bi-transformers,
        ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
        """
        pad_idx = self.char_num

        word1 = paddle.cast(word_ids, "float32")
        word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
        word1 = paddle.cast(word1, "int64")
        word1 = word1[:, :-1, :]
        word2 = word_ids

        enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
        enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]

        gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
        gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)

        gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
                              value=0.,
                              data_format="NLC")
        gsrm_feature2 = gsrm_feature2[:, 1:, ]
        gsrm_features = gsrm_feature1 + gsrm_feature2

        gsrm_out = self.mul(gsrm_features)

        b, t, c = gsrm_out.shape
        gsrm_out = paddle.reshape(gsrm_out, [-1, c])

        return gsrm_features, word_out, gsrm_out


class VSFD(nn.Layer):
    def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
        super(VSFD, self).__init__()
        self.char_num = char_num
        self.fc0 = paddle.nn.Linear(
            in_features=in_channels * 2, out_features=pvam_ch)
        self.fc1 = paddle.nn.Linear(
            in_features=pvam_ch, out_features=self.char_num)

    def forward(self, pvam_feature, gsrm_feature):
        b, t, c1 = pvam_feature.shape
        b, t, c2 = gsrm_feature.shape
        combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
        img_comb_feature_ = paddle.reshape(
            combine_feature_, shape=[-1, c1 + c2])
        img_comb_feature_map = self.fc0(img_comb_feature_)
        img_comb_feature_map = F.sigmoid(img_comb_feature_map)
        img_comb_feature_map = paddle.reshape(
            img_comb_feature_map, shape=[-1, t, c1])
        combine_feature = img_comb_feature_map * pvam_feature + (
            1.0 - img_comb_feature_map) * gsrm_feature
        img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])

        out = self.fc1(img_comb_feature)
        return out


class SRNHead(nn.Layer):
    def __init__(self, in_channels, out_channels, max_text_length, num_heads,
                 num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
        super(SRNHead, self).__init__()
        self.char_num = out_channels
        self.max_length = max_text_length
        self.num_heads = num_heads
        self.num_encoder_TUs = num_encoder_TUs
        self.num_decoder_TUs = num_decoder_TUs
        self.hidden_dims = hidden_dims

        self.pvam = PVAM(
            in_channels=in_channels,
            char_num=self.char_num,
            max_text_length=self.max_length,
            num_heads=self.num_heads,
            num_encoder_tus=self.num_encoder_TUs,
            hidden_dims=self.hidden_dims)

        self.gsrm = GSRM(
            in_channels=in_channels,
            char_num=self.char_num,
            max_text_length=self.max_length,
            num_heads=self.num_heads,
            num_encoder_tus=self.num_encoder_TUs,
            num_decoder_tus=self.num_decoder_TUs,
            hidden_dims=self.hidden_dims)
        self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)

        self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0

    def forward(self, inputs, targets=None):
        others = targets[-4:]
        encoder_word_pos = others[0]
        gsrm_word_pos = others[1]
        gsrm_slf_attn_bias1 = others[2]
        gsrm_slf_attn_bias2 = others[3]

        pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)

        gsrm_feature, word_out, gsrm_out = self.gsrm(
            pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2)

        final_out = self.vsfd(pvam_feature, gsrm_feature)
        if not self.training:
            final_out = F.softmax(final_out, axis=1)

        _, decoded_out = paddle.topk(final_out, k=1)

        predicts = OrderedDict([
            ('predict', final_out),
            ('pvam_feature', pvam_feature),
            ('decoded_out', decoded_out),
            ('word_out', word_out),
            ('gsrm_out', gsrm_out),
        ])

        return predicts