File size: 11,388 Bytes
a89d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
bn_name = "bn_" + name
self.bn = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class LocalizationNetwork(nn.Layer):
def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
super(LocalizationNetwork, self).__init__()
self.F = num_fiducial
F = num_fiducial
if model_name == "large":
num_filters_list = [64, 128, 256, 512]
fc_dim = 256
else:
num_filters_list = [16, 32, 64, 128]
fc_dim = 64
self.block_list = []
for fno in range(0, len(num_filters_list)):
num_filters = num_filters_list[fno]
name = "loc_conv%d" % fno
conv = self.add_sublayer(
name,
ConvBNLayer(
in_channels=in_channels,
out_channels=num_filters,
kernel_size=3,
act='relu',
name=name))
self.block_list.append(conv)
if fno == len(num_filters_list) - 1:
pool = nn.AdaptiveAvgPool2D(1)
else:
pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
in_channels = num_filters
self.block_list.append(pool)
name = "loc_fc1"
stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
self.fc1 = nn.Linear(
in_channels,
fc_dim,
weight_attr=ParamAttr(
learning_rate=loc_lr,
name=name + "_w",
initializer=nn.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name=name + '.b_0'),
name=name)
# Init fc2 in LocalizationNetwork
initial_bias = self.get_initial_fiducials()
initial_bias = initial_bias.reshape(-1)
name = "loc_fc2"
param_attr = ParamAttr(
learning_rate=loc_lr,
initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
name=name + "_w")
bias_attr = ParamAttr(
learning_rate=loc_lr,
initializer=nn.initializer.Assign(initial_bias),
name=name + "_b")
self.fc2 = nn.Linear(
fc_dim,
F * 2,
weight_attr=param_attr,
bias_attr=bias_attr,
name=name)
self.out_channels = F * 2
def forward(self, x):
"""
Estimating parameters of geometric transformation
Args:
image: input
Return:
batch_C_prime: the matrix of the geometric transformation
"""
B = x.shape[0]
i = 0
for block in self.block_list:
x = block(x)
x = x.squeeze(axis=2).squeeze(axis=2)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = x.reshape(shape=[-1, self.F, 2])
return x
def get_initial_fiducials(self):
""" see RARE paper Fig. 6 (a) """
F = self.F
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return initial_bias
class GridGenerator(nn.Layer):
def __init__(self, in_channels, num_fiducial):
super(GridGenerator, self).__init__()
self.eps = 1e-6
self.F = num_fiducial
name = "ex_fc"
initializer = nn.initializer.Constant(value=0.0)
param_attr = ParamAttr(
learning_rate=0.0, initializer=initializer, name=name + "_w")
bias_attr = ParamAttr(
learning_rate=0.0, initializer=initializer, name=name + "_b")
self.fc = nn.Linear(
in_channels,
6,
weight_attr=param_attr,
bias_attr=bias_attr,
name=name)
def forward(self, batch_C_prime, I_r_size):
"""
Generate the grid for the grid_sampler.
Args:
batch_C_prime: the matrix of the geometric transformation
I_r_size: the shape of the input image
Return:
batch_P_prime: the grid for the grid_sampler
"""
C = self.build_C_paddle()
P = self.build_P_paddle(I_r_size)
inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
P_hat_tensor = self.build_P_hat_paddle(
C, paddle.to_tensor(P)).astype('float32')
inv_delta_C_tensor.stop_gradient = True
P_hat_tensor.stop_gradient = True
batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
batch_C_ex_part_tensor.stop_gradient = True
batch_C_prime_with_zeros = paddle.concat(
[batch_C_prime, batch_C_ex_part_tensor], axis=1)
batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
return batch_P_prime
def build_C_paddle(self):
""" Return coordinates of fiducial points in I_r; C """
F = self.F
ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return C # F x 2
def build_P_paddle(self, I_r_size):
I_r_height, I_r_width = I_r_size
I_r_grid_x = (paddle.arange(
-I_r_width, I_r_width, 2, dtype='float64') + 1.0
) / paddle.to_tensor(np.array([I_r_width]))
I_r_grid_y = (paddle.arange(
-I_r_height, I_r_height, 2, dtype='float64') + 1.0
) / paddle.to_tensor(np.array([I_r_height]))
# P: self.I_r_width x self.I_r_height x 2
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
P = paddle.transpose(P, perm=[1, 0, 2])
# n (= self.I_r_width x self.I_r_height) x 2
return P.reshape([-1, 2])
def build_inv_delta_C_paddle(self, C):
""" Return inv_delta_C which is needed to calculate T """
F = self.F
hat_eye = paddle.eye(F, dtype='float64') # F x F
hat_C = paddle.norm(
C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
hat_C = (hat_C**2) * paddle.log(hat_C)
delta_C = paddle.concat( # F+3 x F+3
[
paddle.concat(
[paddle.ones(
(F, 1), dtype='float64'), C, hat_C], axis=1), # F x F+3
paddle.concat(
[
paddle.zeros(
(2, 3), dtype='float64'), paddle.transpose(
C, perm=[1, 0])
],
axis=1), # 2 x F+3
paddle.concat(
[
paddle.zeros(
(1, 3), dtype='float64'), paddle.ones(
(1, F), dtype='float64')
],
axis=1) # 1 x F+3
],
axis=0)
inv_delta_C = paddle.inverse(delta_C)
return inv_delta_C # F+3 x F+3
def build_P_hat_paddle(self, C, P):
F = self.F
eps = self.eps
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
# P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
C_tile = paddle.unsqueeze(C, axis=0) # 1 x F x 2
P_diff = P_tile - C_tile # n x F x 2
# rbf_norm: n x F
rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)
# rbf: n x F
rbf = paddle.multiply(
paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
P_hat = paddle.concat(
[paddle.ones(
(n, 1), dtype='float64'), P, rbf], axis=1)
return P_hat # n x F+3
def get_expand_tensor(self, batch_C_prime):
B, H, C = batch_C_prime.shape
batch_C_prime = batch_C_prime.reshape([B, H * C])
batch_C_ex_part_tensor = self.fc(batch_C_prime)
batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
return batch_C_ex_part_tensor
class TPS(nn.Layer):
def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
super(TPS, self).__init__()
self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
model_name)
self.grid_generator = GridGenerator(self.loc_net.out_channels,
num_fiducial)
self.out_channels = in_channels
def forward(self, image):
image.stop_gradient = False
batch_C_prime = self.loc_net(image)
batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
batch_P_prime = batch_P_prime.reshape(
[-1, image.shape[2], image.shape[3], 2])
batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
return batch_I_r
|