File size: 24,948 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import sys
import platform
import cv2
import numpy as np
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
import time
import random
from ppocr.utils.logging import get_logger


def str2bool(v):
    return v.lower() in ("true", "t", "1")


def init_args():
    parser = argparse.ArgumentParser()
    # params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--use_xpu", type=str2bool, default=False)
    parser.add_argument("--use_npu", type=str2bool, default=False)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--min_subgraph_size", type=int, default=15)
    parser.add_argument("--precision", type=str, default="fp32")
    parser.add_argument("--gpu_mem", type=int, default=500)
    parser.add_argument("--gpu_id", type=int, default=0)

    # params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--page_num", type=int, default=0)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
    parser.add_argument("--det_box_type", type=str, default='quad')

    # DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
    parser.add_argument("--max_batch_size", type=int, default=10)
    parser.add_argument("--use_dilation", type=str2bool, default=False)
    parser.add_argument("--det_db_score_mode", type=str, default="fast")

    # EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    # SAST parmas
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)

    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
    parser.add_argument("--det_pse_scale", type=int, default=1)

    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)

    # params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_inverse", type=str2bool, default=True)
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
    parser.add_argument("--rec_batch_num", type=int, default=6)
    parser.add_argument("--max_text_length", type=int, default=25)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
    parser.add_argument("--drop_score", type=float, default=0.5)

    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')

    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=6)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--cpu_threads", type=int, default=10)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
    parser.add_argument("--warmup", type=str2bool, default=False)

    # SR parmas
    parser.add_argument("--sr_model_dir", type=str)
    parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
    parser.add_argument("--sr_batch_num", type=int, default=1)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")

    # multi-process
    parser.add_argument("--use_mp", type=str2bool, default=False)
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)

    parser.add_argument("--benchmark", type=str2bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")

    parser.add_argument("--show_log", type=str2bool, default=True)
    parser.add_argument("--use_onnx", type=str2bool, default=False)
    return parser


def parse_args():
    parser = init_args()
    return parser.parse_args()


def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
    elif mode == 'rec':
        model_dir = args.rec_model_dir
    elif mode == 'table':
        model_dir = args.table_model_dir
    elif mode == 'ser':
        model_dir = args.ser_model_dir
    elif mode == 're':
        model_dir = args.re_model_dir
    elif mode == "sr":
        model_dir = args.sr_model_dir
    elif mode == 'layout':
        model_dir = args.layout_model_dir
    else:
        model_dir = args.e2e_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None

    else:
        file_names = ['model', 'inference']
        for file_name in file_names:
            model_file_path = '{}/{}.pdmodel'.format(model_dir, file_name)
            params_file_path = '{}/{}.pdiparams'.format(model_dir, file_name)
            if os.path.exists(model_file_path) and os.path.exists(
                    params_file_path):
                break
        if not os.path.exists(model_file_path):
            raise ValueError(
                "not find model.pdmodel or inference.pdmodel in {}".format(
                    model_dir))
        if not os.path.exists(params_file_path):
            raise ValueError(
                "not find model.pdiparams or inference.pdiparams in {}".format(
                    model_dir))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
        else:
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
                logger.warning(
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
                )
            config.enable_use_gpu(args.gpu_mem, args.gpu_id)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
                    workspace_size=1 << 30,
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.
                    min_subgraph_size,  # skip the minmum trt subgraph
                    use_calib_mode=False)

                # collect shape
                trt_shape_f = os.path.join(model_dir,
                                           f"{mode}_trt_dynamic_shape.txt")

                if not os.path.exists(trt_shape_f):
                    config.collect_shape_range_info(trt_shape_f)
                    logger.info(
                        f"collect dynamic shape info into : {trt_shape_f}")
                try:
                    config.enable_tuned_tensorrt_dynamic_shape(trt_shape_f,
                                                               True)
                except Exception as E:
                    logger.info(E)
                    logger.info("Please keep your paddlepaddle-gpu >= 2.3.0!")

        elif args.use_npu:
            config.enable_custom_device("npu")
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
        else:
            config.disable_gpu()
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
                if hasattr(args, "cpu_threads"):
                    config.set_cpu_math_library_num_threads(args.cpu_threads)
                else:
                    # default cpu threads as 10
                    config.set_cpu_math_library_num_threads(10)
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
        if mode == 're':
            config.delete_pass("simplify_with_basic_ops_pass")
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        if mode in ['ser', 're']:
            input_tensor = []
            for name in input_names:
                input_tensor.append(predictor.get_input_handle(name))
        else:
            for name in input_names:
                input_tensor = predictor.get_input_handle(name)
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
    else:
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
    return output_tensors


def get_infer_gpuid():
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


def draw_text_det_res(dt_boxes, img):
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
    return img


def resize_img(img, input_size=600):
    """
    resize img and limit the longest side of the image to input_size
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img


def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/fonts/simfang.ttf"):
    """
    Visualize the results of OCR detection and recognition
    args:
        image(Image|array): RGB image
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
        font_path: the path of font which is used to draw text
    return(array):
        the visualized img
    """
    if scores is None:
        scores = [1] * len(boxes)
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
            continue
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    if txts is not None:
        img = np.array(resize_img(image, input_size=600))
        txt_img = text_visual(
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
        return img
    return image


def draw_ocr_box_txt(image,
                     boxes,
                     txts=None,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/fonts/simfang.ttf"):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
    random.seed(0)

    draw_left = ImageDraw.Draw(img_left)
    if txts is None or len(txts) != len(boxes):
        txts = [None] * len(boxes)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
        draw_left.polygon(box, fill=color)
        img_right_text = draw_box_txt_fine((w, h), box, txt, font_path)
        pts = np.array(box, np.int32).reshape((-1, 1, 2))
        cv2.polylines(img_right_text, [pts], True, color, 1)
        img_right = cv2.bitwise_and(img_right, img_right_text)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
    return np.array(img_show)


def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"):
    box_height = int(
        math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][1])**2))
    box_width = int(
        math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][1])**2))

    if box_height > 2 * box_width and box_height > 30:
        img_text = Image.new('RGB', (box_height, box_width), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_height, box_width), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
        img_text = img_text.transpose(Image.ROTATE_270)
    else:
        img_text = Image.new('RGB', (box_width, box_height), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_width, box_height), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)

    pts1 = np.float32(
        [[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]])
    pts2 = np.array(box, dtype=np.float32)
    M = cv2.getPerspectiveTransform(pts1, pts2)

    img_text = np.array(img_text, dtype=np.uint8)
    img_right_text = cv2.warpPerspective(
        img_text,
        M,
        img_size,
        flags=cv2.INTER_NEAREST,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=(255, 255, 255))
    return img_right_text


def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"):
    font_size = int(sz[1] * 0.99)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    length = font.getsize(txt)[0]
    if length > sz[0]:
        font_size = int(font_size * sz[0] / length)
        font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    return font


def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
        font_path: the path of font which is used to draw text
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
        return blank_img, draw_txt

    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")

    gap = font_size + 5
    txt_img_list = []
    count, index = 1, 0
    for idx, txt in enumerate(texts):
        index += 1
        if scores[idx] < threshold or math.isnan(scores[idx]):
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
            count += 1
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
        # whether add new blank img or not
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
        count += 1
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)


def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.frombuffer(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


def get_minarea_rect_crop(img, points):
    bounding_box = cv2.minAreaRect(np.array(points).astype(np.int32))
    points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

    index_a, index_b, index_c, index_d = 0, 1, 2, 3
    if points[1][1] > points[0][1]:
        index_a = 0
        index_d = 1
    else:
        index_a = 1
        index_d = 0
    if points[3][1] > points[2][1]:
        index_b = 2
        index_c = 3
    else:
        index_b = 3
        index_c = 2

    box = [points[index_a], points[index_b], points[index_c], points[index_d]]
    crop_img = get_rotate_crop_image(img, np.array(box))
    return crop_img


def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


if __name__ == '__main__':
    pass