File size: 7,965 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import json
import paddle
import paddle.distributed as dist

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.visual import draw_re_results
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps, print_dict
from tools.program import ArgsParser, load_config, merge_config
from tools.infer_kie_token_ser import SerPredictor


class ReArgsParser(ArgsParser):
    def __init__(self):
        super(ReArgsParser, self).__init__()
        self.add_argument(
            "-c_ser", "--config_ser", help="ser configuration file to use")
        self.add_argument(
            "-o_ser",
            "--opt_ser",
            nargs='+',
            help="set ser configuration options ")

    def parse_args(self, argv=None):
        args = super(ReArgsParser, self).parse_args(argv)
        assert args.config_ser is not None, \
            "Please specify --config_ser=ser_configure_file_path."
        args.opt_ser = self._parse_opt(args.opt_ser)
        return args


def make_input(ser_inputs, ser_results):
    entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2}
    batch_size, max_seq_len = ser_inputs[0].shape[:2]
    entities = ser_inputs[8][0]
    ser_results = ser_results[0]
    assert len(entities) == len(ser_results)

    # entities
    start = []
    end = []
    label = []
    entity_idx_dict = {}
    for i, (res, entity) in enumerate(zip(ser_results, entities)):
        if res['pred'] == 'O':
            continue
        entity_idx_dict[len(start)] = i
        start.append(entity['start'])
        end.append(entity['end'])
        label.append(entities_labels[res['pred']])

    entities = np.full([max_seq_len + 1, 3], fill_value=-1, dtype=np.int64)
    entities[0, 0] = len(start)
    entities[1:len(start) + 1, 0] = start
    entities[0, 1] = len(end)
    entities[1:len(end) + 1, 1] = end
    entities[0, 2] = len(label)
    entities[1:len(label) + 1, 2] = label

    # relations
    head = []
    tail = []
    for i in range(len(label)):
        for j in range(len(label)):
            if label[i] == 1 and label[j] == 2:
                head.append(i)
                tail.append(j)

    relations = np.full([len(head) + 1, 2], fill_value=-1, dtype=np.int64)
    relations[0, 0] = len(head)
    relations[1:len(head) + 1, 0] = head
    relations[0, 1] = len(tail)
    relations[1:len(tail) + 1, 1] = tail

    entities = np.expand_dims(entities, axis=0)
    entities = np.repeat(entities, batch_size, axis=0)
    relations = np.expand_dims(relations, axis=0)
    relations = np.repeat(relations, batch_size, axis=0)

    # remove ocr_info segment_offset_id and label in ser input
    if isinstance(ser_inputs[0], paddle.Tensor):
        entities = paddle.to_tensor(entities)
        relations = paddle.to_tensor(relations)
    ser_inputs = ser_inputs[:5] + [entities, relations]

    entity_idx_dict_batch = []
    for b in range(batch_size):
        entity_idx_dict_batch.append(entity_idx_dict)
    return ser_inputs, entity_idx_dict_batch


class SerRePredictor(object):
    def __init__(self, config, ser_config):
        global_config = config['Global']
        if "infer_mode" in global_config:
            ser_config["Global"]["infer_mode"] = global_config["infer_mode"]

        self.ser_engine = SerPredictor(ser_config)

        #  init re model 

        # build post process
        self.post_process_class = build_post_process(config['PostProcess'],
                                                     global_config)

        # build model
        self.model = build_model(config['Architecture'])

        load_model(
            config, self.model, model_type=config['Architecture']["model_type"])

        self.model.eval()

    def __call__(self, data):
        ser_results, ser_inputs = self.ser_engine(data)
        re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results)
        if self.model.backbone.use_visual_backbone is False:
            re_input.pop(4)
        preds = self.model(re_input)
        post_result = self.post_process_class(
            preds,
            ser_results=ser_results,
            entity_idx_dict_batch=entity_idx_dict_batch)
        return post_result


def preprocess():
    FLAGS = ReArgsParser().parse_args()
    config = load_config(FLAGS.config)
    config = merge_config(config, FLAGS.opt)

    ser_config = load_config(FLAGS.config_ser)
    ser_config = merge_config(ser_config, FLAGS.opt_ser)

    logger = get_logger()

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']

    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)

    logger.info('{} re config {}'.format('*' * 10, '*' * 10))
    print_dict(config, logger)
    logger.info('\n')
    logger.info('{} ser config {}'.format('*' * 10, '*' * 10))
    print_dict(ser_config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, ser_config, device, logger


if __name__ == '__main__':
    config, ser_config, device, logger = preprocess()
    os.makedirs(config['Global']['save_res_path'], exist_ok=True)

    ser_re_engine = SerRePredictor(config, ser_config)

    if config["Global"].get("infer_mode", None) is False:
        data_dir = config['Eval']['dataset']['data_dir']
        with open(config['Global']['infer_img'], "rb") as f:
            infer_imgs = f.readlines()
    else:
        infer_imgs = get_image_file_list(config['Global']['infer_img'])

    with open(
            os.path.join(config['Global']['save_res_path'],
                         "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
        for idx, info in enumerate(infer_imgs):
            if config["Global"].get("infer_mode", None) is False:
                data_line = info.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
                img_path = os.path.join(data_dir, substr[0])
                data = {'img_path': img_path, 'label': substr[1]}
            else:
                img_path = info
                data = {'img_path': img_path}

            save_img_path = os.path.join(
                config['Global']['save_res_path'],
                os.path.splitext(os.path.basename(img_path))[0] + "_ser_re.jpg")

            result = ser_re_engine(data)
            result = result[0]
            fout.write(img_path + "\t" + json.dumps(
                result, ensure_ascii=False) + "\n")
            img_res = draw_re_results(img_path, result)
            cv2.imwrite(save_img_path, img_res)

            logger.info("process: [{}/{}], save result to {}".format(
                idx, len(infer_imgs), save_img_path))