File size: 5,176 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
https://github.com/FudanVI/FudanOCR/blob/main/text-gestalt/utils/ssim_psnr.py
"""

from math import exp

import paddle
import paddle.nn.functional as F
import paddle.nn as nn
import string


class SSIM(nn.Layer):
    def __init__(self, window_size=11, size_average=True):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = 1
        self.window = self.create_window(window_size, self.channel)

    def gaussian(self, window_size, sigma):
        gauss = paddle.to_tensor([
            exp(-(x - window_size // 2)**2 / float(2 * sigma**2))
            for x in range(window_size)
        ])
        return gauss / gauss.sum()

    def create_window(self, window_size, channel):
        _1D_window = self.gaussian(window_size, 1.5).unsqueeze(1)
        _2D_window = _1D_window.mm(_1D_window.t()).unsqueeze(0).unsqueeze(0)
        window = _2D_window.expand([channel, 1, window_size, window_size])
        return window

    def _ssim(self, img1, img2, window, window_size, channel,
              size_average=True):
        mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
        mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

        mu1_sq = mu1.pow(2)
        mu2_sq = mu2.pow(2)
        mu1_mu2 = mu1 * mu2

        sigma1_sq = F.conv2d(
            img1 * img1, window, padding=window_size // 2,
            groups=channel) - mu1_sq
        sigma2_sq = F.conv2d(
            img2 * img2, window, padding=window_size // 2,
            groups=channel) - mu2_sq
        sigma12 = F.conv2d(
            img1 * img2, window, padding=window_size // 2,
            groups=channel) - mu1_mu2

        C1 = 0.01**2
        C2 = 0.03**2

        ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
            (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

        if size_average:
            return ssim_map.mean()
        else:
            return ssim_map.mean([1, 2, 3])

    def ssim(self, img1, img2, window_size=11, size_average=True):
        (_, channel, _, _) = img1.shape
        window = self.create_window(window_size, channel)

        return self._ssim(img1, img2, window, window_size, channel,
                          size_average)

    def forward(self, img1, img2):
        (_, channel, _, _) = img1.shape

        if channel == self.channel and self.window.dtype == img1.dtype:
            window = self.window
        else:
            window = self.create_window(self.window_size, channel)

            self.window = window
            self.channel = channel

        return self._ssim(img1, img2, window, self.window_size, channel,
                          self.size_average)


class SRMetric(object):
    def __init__(self, main_indicator='all', **kwargs):
        self.main_indicator = main_indicator
        self.eps = 1e-5
        self.psnr_result = []
        self.ssim_result = []
        self.calculate_ssim = SSIM()
        self.reset()

    def reset(self):
        self.correct_num = 0
        self.all_num = 0
        self.norm_edit_dis = 0
        self.psnr_result = []
        self.ssim_result = []

    def calculate_psnr(self, img1, img2):
        # img1 and img2 have range [0, 1]
        mse = ((img1 * 255 - img2 * 255)**2).mean()
        if mse == 0:
            return float('inf')
        return 20 * paddle.log10(255.0 / paddle.sqrt(mse))

    def _normalize_text(self, text):
        text = ''.join(
            filter(lambda x: x in (string.digits + string.ascii_letters), text))
        return text.lower()

    def __call__(self, pred_label, *args, **kwargs):
        metric = {}
        images_sr = pred_label["sr_img"]
        images_hr = pred_label["hr_img"]
        psnr = self.calculate_psnr(images_sr, images_hr)
        ssim = self.calculate_ssim(images_sr, images_hr)
        self.psnr_result.append(psnr)
        self.ssim_result.append(ssim)

    def get_metric(self):
        """
        return metrics {
                 'acc': 0,
                 'norm_edit_dis': 0,
            }
        """
        self.psnr_avg = sum(self.psnr_result) / len(self.psnr_result)
        self.psnr_avg = round(self.psnr_avg.item(), 6)
        self.ssim_avg = sum(self.ssim_result) / len(self.ssim_result)
        self.ssim_avg = round(self.ssim_avg.item(), 6)

        self.all_avg = self.psnr_avg + self.ssim_avg

        self.reset()
        return {
            'psnr_avg': self.psnr_avg,
            "ssim_avg": self.ssim_avg,
            "all": self.all_avg
        }