|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import cv2 |
|
import numpy as np |
|
import random |
|
import copy |
|
from PIL import Image |
|
from .text_image_aug import tia_perspective, tia_stretch, tia_distort |
|
from .abinet_aug import CVGeometry, CVDeterioration, CVColorJitter, SVTRGeometry, SVTRDeterioration |
|
from paddle.vision.transforms import Compose |
|
|
|
|
|
class RecAug(object): |
|
def __init__(self, |
|
tia_prob=0.4, |
|
crop_prob=0.4, |
|
reverse_prob=0.4, |
|
noise_prob=0.4, |
|
jitter_prob=0.4, |
|
blur_prob=0.4, |
|
hsv_aug_prob=0.4, |
|
**kwargs): |
|
self.tia_prob = tia_prob |
|
self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob, |
|
jitter_prob, blur_prob, hsv_aug_prob) |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
h, w, _ = img.shape |
|
|
|
|
|
if random.random() <= self.tia_prob: |
|
if h >= 20 and w >= 20: |
|
img = tia_distort(img, random.randint(3, 6)) |
|
img = tia_stretch(img, random.randint(3, 6)) |
|
img = tia_perspective(img) |
|
|
|
|
|
data['image'] = img |
|
data = self.bda(data) |
|
return data |
|
|
|
|
|
class BaseDataAugmentation(object): |
|
def __init__(self, |
|
crop_prob=0.4, |
|
reverse_prob=0.4, |
|
noise_prob=0.4, |
|
jitter_prob=0.4, |
|
blur_prob=0.4, |
|
hsv_aug_prob=0.4, |
|
**kwargs): |
|
self.crop_prob = crop_prob |
|
self.reverse_prob = reverse_prob |
|
self.noise_prob = noise_prob |
|
self.jitter_prob = jitter_prob |
|
self.blur_prob = blur_prob |
|
self.hsv_aug_prob = hsv_aug_prob |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
h, w, _ = img.shape |
|
|
|
if random.random() <= self.crop_prob and h >= 20 and w >= 20: |
|
img = get_crop(img) |
|
|
|
if random.random() <= self.blur_prob: |
|
img = blur(img) |
|
|
|
if random.random() <= self.hsv_aug_prob: |
|
img = hsv_aug(img) |
|
|
|
if random.random() <= self.jitter_prob: |
|
img = jitter(img) |
|
|
|
if random.random() <= self.noise_prob: |
|
img = add_gasuss_noise(img) |
|
|
|
if random.random() <= self.reverse_prob: |
|
img = 255 - img |
|
|
|
data['image'] = img |
|
return data |
|
|
|
|
|
class ABINetRecAug(object): |
|
def __init__(self, |
|
geometry_p=0.5, |
|
deterioration_p=0.25, |
|
colorjitter_p=0.25, |
|
**kwargs): |
|
self.transforms = Compose([ |
|
CVGeometry( |
|
degrees=45, |
|
translate=(0.0, 0.0), |
|
scale=(0.5, 2.), |
|
shear=(45, 15), |
|
distortion=0.5, |
|
p=geometry_p), CVDeterioration( |
|
var=20, degrees=6, factor=4, p=deterioration_p), |
|
CVColorJitter( |
|
brightness=0.5, |
|
contrast=0.5, |
|
saturation=0.5, |
|
hue=0.1, |
|
p=colorjitter_p) |
|
]) |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
img = self.transforms(img) |
|
data['image'] = img |
|
return data |
|
|
|
|
|
class RecConAug(object): |
|
def __init__(self, |
|
prob=0.5, |
|
image_shape=(32, 320, 3), |
|
max_text_length=25, |
|
ext_data_num=1, |
|
**kwargs): |
|
self.ext_data_num = ext_data_num |
|
self.prob = prob |
|
self.max_text_length = max_text_length |
|
self.image_shape = image_shape |
|
self.max_wh_ratio = self.image_shape[1] / self.image_shape[0] |
|
|
|
def merge_ext_data(self, data, ext_data): |
|
ori_w = round(data['image'].shape[1] / data['image'].shape[0] * |
|
self.image_shape[0]) |
|
ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] * |
|
self.image_shape[0]) |
|
data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0])) |
|
ext_data['image'] = cv2.resize(ext_data['image'], |
|
(ext_w, self.image_shape[0])) |
|
data['image'] = np.concatenate( |
|
[data['image'], ext_data['image']], axis=1) |
|
data["label"] += ext_data["label"] |
|
return data |
|
|
|
def __call__(self, data): |
|
rnd_num = random.random() |
|
if rnd_num > self.prob: |
|
return data |
|
for idx, ext_data in enumerate(data["ext_data"]): |
|
if len(data["label"]) + len(ext_data[ |
|
"label"]) > self.max_text_length: |
|
break |
|
concat_ratio = data['image'].shape[1] / data['image'].shape[ |
|
0] + ext_data['image'].shape[1] / ext_data['image'].shape[0] |
|
if concat_ratio > self.max_wh_ratio: |
|
break |
|
data = self.merge_ext_data(data, ext_data) |
|
data.pop("ext_data") |
|
return data |
|
|
|
|
|
class SVTRRecAug(object): |
|
def __init__(self, |
|
aug_type=0, |
|
geometry_p=0.5, |
|
deterioration_p=0.25, |
|
colorjitter_p=0.25, |
|
**kwargs): |
|
self.transforms = Compose([ |
|
SVTRGeometry( |
|
aug_type=aug_type, |
|
degrees=45, |
|
translate=(0.0, 0.0), |
|
scale=(0.5, 2.), |
|
shear=(45, 15), |
|
distortion=0.5, |
|
p=geometry_p), SVTRDeterioration( |
|
var=20, degrees=6, factor=4, p=deterioration_p), |
|
CVColorJitter( |
|
brightness=0.5, |
|
contrast=0.5, |
|
saturation=0.5, |
|
hue=0.1, |
|
p=colorjitter_p) |
|
]) |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
img = self.transforms(img) |
|
data['image'] = img |
|
return data |
|
|
|
|
|
class ClsResizeImg(object): |
|
def __init__(self, image_shape, **kwargs): |
|
self.image_shape = image_shape |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
norm_img, _ = resize_norm_img(img, self.image_shape) |
|
data['image'] = norm_img |
|
return data |
|
|
|
|
|
class RecResizeImg(object): |
|
def __init__(self, |
|
image_shape, |
|
infer_mode=False, |
|
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt', |
|
padding=True, |
|
**kwargs): |
|
self.image_shape = image_shape |
|
self.infer_mode = infer_mode |
|
self.character_dict_path = character_dict_path |
|
self.padding = padding |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
if self.infer_mode and self.character_dict_path is not None: |
|
norm_img, valid_ratio = resize_norm_img_chinese(img, |
|
self.image_shape) |
|
else: |
|
norm_img, valid_ratio = resize_norm_img(img, self.image_shape, |
|
self.padding) |
|
data['image'] = norm_img |
|
data['valid_ratio'] = valid_ratio |
|
return data |
|
|
|
|
|
class VLRecResizeImg(object): |
|
def __init__(self, |
|
image_shape, |
|
infer_mode=False, |
|
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt', |
|
padding=True, |
|
**kwargs): |
|
self.image_shape = image_shape |
|
self.infer_mode = infer_mode |
|
self.character_dict_path = character_dict_path |
|
self.padding = padding |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
|
|
imgC, imgH, imgW = self.image_shape |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_w = imgW |
|
resized_image = resized_image.astype('float32') |
|
if self.image_shape[0] == 1: |
|
resized_image = resized_image / 255 |
|
norm_img = resized_image[np.newaxis, :] |
|
else: |
|
norm_img = resized_image.transpose((2, 0, 1)) / 255 |
|
valid_ratio = min(1.0, float(resized_w / imgW)) |
|
|
|
data['image'] = norm_img |
|
data['valid_ratio'] = valid_ratio |
|
return data |
|
|
|
|
|
class RFLRecResizeImg(object): |
|
def __init__(self, image_shape, padding=True, interpolation=1, **kwargs): |
|
self.image_shape = image_shape |
|
self.padding = padding |
|
|
|
self.interpolation = interpolation |
|
if self.interpolation == 0: |
|
self.interpolation = cv2.INTER_NEAREST |
|
elif self.interpolation == 1: |
|
self.interpolation = cv2.INTER_LINEAR |
|
elif self.interpolation == 2: |
|
self.interpolation = cv2.INTER_CUBIC |
|
elif self.interpolation == 3: |
|
self.interpolation = cv2.INTER_AREA |
|
else: |
|
raise Exception("Unsupported interpolation type !!!") |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
norm_img, valid_ratio = resize_norm_img( |
|
img, self.image_shape, self.padding, self.interpolation) |
|
data['image'] = norm_img |
|
data['valid_ratio'] = valid_ratio |
|
return data |
|
|
|
|
|
class SRNRecResizeImg(object): |
|
def __init__(self, image_shape, num_heads, max_text_length, **kwargs): |
|
self.image_shape = image_shape |
|
self.num_heads = num_heads |
|
self.max_text_length = max_text_length |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
norm_img = resize_norm_img_srn(img, self.image_shape) |
|
data['image'] = norm_img |
|
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ |
|
srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length) |
|
|
|
data['encoder_word_pos'] = encoder_word_pos |
|
data['gsrm_word_pos'] = gsrm_word_pos |
|
data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1 |
|
data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2 |
|
return data |
|
|
|
|
|
class SARRecResizeImg(object): |
|
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs): |
|
self.image_shape = image_shape |
|
self.width_downsample_ratio = width_downsample_ratio |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( |
|
img, self.image_shape, self.width_downsample_ratio) |
|
data['image'] = norm_img |
|
data['resized_shape'] = resize_shape |
|
data['pad_shape'] = pad_shape |
|
data['valid_ratio'] = valid_ratio |
|
return data |
|
|
|
|
|
class PRENResizeImg(object): |
|
def __init__(self, image_shape, **kwargs): |
|
""" |
|
Accroding to original paper's realization, it's a hard resize method here. |
|
So maybe you should optimize it to fit for your task better. |
|
""" |
|
self.dst_h, self.dst_w = image_shape |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
resized_img = cv2.resize( |
|
img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR) |
|
resized_img = resized_img.transpose((2, 0, 1)) / 255 |
|
resized_img -= 0.5 |
|
resized_img /= 0.5 |
|
data['image'] = resized_img.astype(np.float32) |
|
return data |
|
|
|
|
|
class SPINRecResizeImg(object): |
|
def __init__(self, |
|
image_shape, |
|
interpolation=2, |
|
mean=(127.5, 127.5, 127.5), |
|
std=(127.5, 127.5, 127.5), |
|
**kwargs): |
|
self.image_shape = image_shape |
|
|
|
self.mean = np.array(mean, dtype=np.float32) |
|
self.std = np.array(std, dtype=np.float32) |
|
self.interpolation = interpolation |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
|
|
if self.interpolation == 0: |
|
interpolation = cv2.INTER_NEAREST |
|
elif self.interpolation == 1: |
|
interpolation = cv2.INTER_LINEAR |
|
elif self.interpolation == 2: |
|
interpolation = cv2.INTER_CUBIC |
|
elif self.interpolation == 3: |
|
interpolation = cv2.INTER_AREA |
|
else: |
|
raise Exception("Unsupported interpolation type !!!") |
|
|
|
if img is None: |
|
return None |
|
|
|
img = cv2.resize(img, tuple(self.image_shape), interpolation) |
|
img = np.array(img, np.float32) |
|
img = np.expand_dims(img, -1) |
|
img = img.transpose((2, 0, 1)) |
|
|
|
img = img.copy().astype(np.float32) |
|
mean = np.float64(self.mean.reshape(1, -1)) |
|
stdinv = 1 / np.float64(self.std.reshape(1, -1)) |
|
img -= mean |
|
img *= stdinv |
|
data['image'] = img |
|
return data |
|
|
|
|
|
class GrayRecResizeImg(object): |
|
def __init__(self, |
|
image_shape, |
|
resize_type, |
|
inter_type='Image.ANTIALIAS', |
|
scale=True, |
|
padding=False, |
|
**kwargs): |
|
self.image_shape = image_shape |
|
self.resize_type = resize_type |
|
self.padding = padding |
|
self.inter_type = eval(inter_type) |
|
self.scale = scale |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
image_shape = self.image_shape |
|
if self.padding: |
|
imgC, imgH, imgW = image_shape |
|
|
|
h = img.shape[0] |
|
w = img.shape[1] |
|
ratio = w / float(h) |
|
if math.ceil(imgH * ratio) > imgW: |
|
resized_w = imgW |
|
else: |
|
resized_w = int(math.ceil(imgH * ratio)) |
|
resized_image = cv2.resize(img, (resized_w, imgH)) |
|
norm_img = np.expand_dims(resized_image, -1) |
|
norm_img = norm_img.transpose((2, 0, 1)) |
|
resized_image = norm_img.astype(np.float32) / 128. - 1. |
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) |
|
padding_im[:, :, 0:resized_w] = resized_image |
|
data['image'] = padding_im |
|
return data |
|
if self.resize_type == 'PIL': |
|
image_pil = Image.fromarray(np.uint8(img)) |
|
img = image_pil.resize(self.image_shape, self.inter_type) |
|
img = np.array(img) |
|
if self.resize_type == 'OpenCV': |
|
img = cv2.resize(img, self.image_shape) |
|
norm_img = np.expand_dims(img, -1) |
|
norm_img = norm_img.transpose((2, 0, 1)) |
|
if self.scale: |
|
data['image'] = norm_img.astype(np.float32) / 128. - 1. |
|
else: |
|
data['image'] = norm_img.astype(np.float32) / 255. |
|
return data |
|
|
|
|
|
class ABINetRecResizeImg(object): |
|
def __init__(self, image_shape, **kwargs): |
|
self.image_shape = image_shape |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
norm_img, valid_ratio = resize_norm_img_abinet(img, self.image_shape) |
|
data['image'] = norm_img |
|
data['valid_ratio'] = valid_ratio |
|
return data |
|
|
|
|
|
class SVTRRecResizeImg(object): |
|
def __init__(self, image_shape, padding=True, **kwargs): |
|
self.image_shape = image_shape |
|
self.padding = padding |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
|
|
norm_img, valid_ratio = resize_norm_img(img, self.image_shape, |
|
self.padding) |
|
data['image'] = norm_img |
|
data['valid_ratio'] = valid_ratio |
|
return data |
|
|
|
|
|
class RobustScannerRecResizeImg(object): |
|
def __init__(self, |
|
image_shape, |
|
max_text_length, |
|
width_downsample_ratio=0.25, |
|
**kwargs): |
|
self.image_shape = image_shape |
|
self.width_downsample_ratio = width_downsample_ratio |
|
self.max_text_length = max_text_length |
|
|
|
def __call__(self, data): |
|
img = data['image'] |
|
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( |
|
img, self.image_shape, self.width_downsample_ratio) |
|
word_positons = np.array(range(0, self.max_text_length)).astype('int64') |
|
data['image'] = norm_img |
|
data['resized_shape'] = resize_shape |
|
data['pad_shape'] = pad_shape |
|
data['valid_ratio'] = valid_ratio |
|
data['word_positons'] = word_positons |
|
return data |
|
|
|
|
|
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25): |
|
imgC, imgH, imgW_min, imgW_max = image_shape |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
valid_ratio = 1.0 |
|
|
|
width_divisor = int(1 / width_downsample_ratio) |
|
|
|
ratio = w / float(h) |
|
resize_w = math.ceil(imgH * ratio) |
|
if resize_w % width_divisor != 0: |
|
resize_w = round(resize_w / width_divisor) * width_divisor |
|
if imgW_min is not None: |
|
resize_w = max(imgW_min, resize_w) |
|
if imgW_max is not None: |
|
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) |
|
resize_w = min(imgW_max, resize_w) |
|
resized_image = cv2.resize(img, (resize_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
|
|
if image_shape[0] == 1: |
|
resized_image = resized_image / 255 |
|
resized_image = resized_image[np.newaxis, :] |
|
else: |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
resize_shape = resized_image.shape |
|
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) |
|
padding_im[:, :, 0:resize_w] = resized_image |
|
pad_shape = padding_im.shape |
|
|
|
return padding_im, resize_shape, pad_shape, valid_ratio |
|
|
|
|
|
def resize_norm_img(img, |
|
image_shape, |
|
padding=True, |
|
interpolation=cv2.INTER_LINEAR): |
|
imgC, imgH, imgW = image_shape |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
if not padding: |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=interpolation) |
|
resized_w = imgW |
|
else: |
|
ratio = w / float(h) |
|
if math.ceil(imgH * ratio) > imgW: |
|
resized_w = imgW |
|
else: |
|
resized_w = int(math.ceil(imgH * ratio)) |
|
resized_image = cv2.resize(img, (resized_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
if image_shape[0] == 1: |
|
resized_image = resized_image / 255 |
|
resized_image = resized_image[np.newaxis, :] |
|
else: |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) |
|
padding_im[:, :, 0:resized_w] = resized_image |
|
valid_ratio = min(1.0, float(resized_w / imgW)) |
|
return padding_im, valid_ratio |
|
|
|
|
|
def resize_norm_img_chinese(img, image_shape): |
|
imgC, imgH, imgW = image_shape |
|
|
|
max_wh_ratio = imgW * 1.0 / imgH |
|
h, w = img.shape[0], img.shape[1] |
|
ratio = w * 1.0 / h |
|
max_wh_ratio = max(max_wh_ratio, ratio) |
|
imgW = int(imgH * max_wh_ratio) |
|
if math.ceil(imgH * ratio) > imgW: |
|
resized_w = imgW |
|
else: |
|
resized_w = int(math.ceil(imgH * ratio)) |
|
resized_image = cv2.resize(img, (resized_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
if image_shape[0] == 1: |
|
resized_image = resized_image / 255 |
|
resized_image = resized_image[np.newaxis, :] |
|
else: |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) |
|
padding_im[:, :, 0:resized_w] = resized_image |
|
valid_ratio = min(1.0, float(resized_w / imgW)) |
|
return padding_im, valid_ratio |
|
|
|
|
|
def resize_norm_img_srn(img, image_shape): |
|
imgC, imgH, imgW = image_shape |
|
|
|
img_black = np.zeros((imgH, imgW)) |
|
im_hei = img.shape[0] |
|
im_wid = img.shape[1] |
|
|
|
if im_wid <= im_hei * 1: |
|
img_new = cv2.resize(img, (imgH * 1, imgH)) |
|
elif im_wid <= im_hei * 2: |
|
img_new = cv2.resize(img, (imgH * 2, imgH)) |
|
elif im_wid <= im_hei * 3: |
|
img_new = cv2.resize(img, (imgH * 3, imgH)) |
|
else: |
|
img_new = cv2.resize(img, (imgW, imgH)) |
|
|
|
img_np = np.asarray(img_new) |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) |
|
img_black[:, 0:img_np.shape[1]] = img_np |
|
img_black = img_black[:, :, np.newaxis] |
|
|
|
row, col, c = img_black.shape |
|
c = 1 |
|
|
|
return np.reshape(img_black, (c, row, col)).astype(np.float32) |
|
|
|
|
|
def resize_norm_img_abinet(img, image_shape): |
|
imgC, imgH, imgW = image_shape |
|
|
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_w = imgW |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image / 255. |
|
|
|
mean = np.array([0.485, 0.456, 0.406]) |
|
std = np.array([0.229, 0.224, 0.225]) |
|
resized_image = ( |
|
resized_image - mean[None, None, ...]) / std[None, None, ...] |
|
resized_image = resized_image.transpose((2, 0, 1)) |
|
resized_image = resized_image.astype('float32') |
|
|
|
valid_ratio = min(1.0, float(resized_w / imgW)) |
|
return resized_image, valid_ratio |
|
|
|
|
|
def srn_other_inputs(image_shape, num_heads, max_text_length): |
|
|
|
imgC, imgH, imgW = image_shape |
|
feature_dim = int((imgH / 8) * (imgW / 8)) |
|
|
|
encoder_word_pos = np.array(range(0, feature_dim)).reshape( |
|
(feature_dim, 1)).astype('int64') |
|
gsrm_word_pos = np.array(range(0, max_text_length)).reshape( |
|
(max_text_length, 1)).astype('int64') |
|
|
|
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) |
|
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( |
|
[1, max_text_length, max_text_length]) |
|
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, |
|
[num_heads, 1, 1]) * [-1e9] |
|
|
|
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( |
|
[1, max_text_length, max_text_length]) |
|
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, |
|
[num_heads, 1, 1]) * [-1e9] |
|
|
|
return [ |
|
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, |
|
gsrm_slf_attn_bias2 |
|
] |
|
|
|
|
|
def flag(): |
|
""" |
|
flag |
|
""" |
|
return 1 if random.random() > 0.5000001 else -1 |
|
|
|
|
|
def hsv_aug(img): |
|
""" |
|
cvtColor |
|
""" |
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
|
delta = 0.001 * random.random() * flag() |
|
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta) |
|
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) |
|
return new_img |
|
|
|
|
|
def blur(img): |
|
""" |
|
blur |
|
""" |
|
h, w, _ = img.shape |
|
if h > 10 and w > 10: |
|
return cv2.GaussianBlur(img, (5, 5), 1) |
|
else: |
|
return img |
|
|
|
|
|
def jitter(img): |
|
""" |
|
jitter |
|
""" |
|
w, h, _ = img.shape |
|
if h > 10 and w > 10: |
|
thres = min(w, h) |
|
s = int(random.random() * thres * 0.01) |
|
src_img = img.copy() |
|
for i in range(s): |
|
img[i:, i:, :] = src_img[:w - i, :h - i, :] |
|
return img |
|
else: |
|
return img |
|
|
|
|
|
def add_gasuss_noise(image, mean=0, var=0.1): |
|
""" |
|
Gasuss noise |
|
""" |
|
|
|
noise = np.random.normal(mean, var**0.5, image.shape) |
|
out = image + 0.5 * noise |
|
out = np.clip(out, 0, 255) |
|
out = np.uint8(out) |
|
return out |
|
|
|
|
|
def get_crop(image): |
|
""" |
|
random crop |
|
""" |
|
h, w, _ = image.shape |
|
top_min = 1 |
|
top_max = 8 |
|
top_crop = int(random.randint(top_min, top_max)) |
|
top_crop = min(top_crop, h - 1) |
|
crop_img = image.copy() |
|
ratio = random.randint(0, 1) |
|
if ratio: |
|
crop_img = crop_img[top_crop:h, :, :] |
|
else: |
|
crop_img = crop_img[0:h - top_crop, :, :] |
|
return crop_img |
|
|
|
|
|
def rad(x): |
|
""" |
|
rad |
|
""" |
|
return x * np.pi / 180 |
|
|
|
|
|
def get_warpR(config): |
|
""" |
|
get_warpR |
|
""" |
|
anglex, angley, anglez, fov, w, h, r = \ |
|
config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r |
|
if w > 69 and w < 112: |
|
anglex = anglex * 1.5 |
|
|
|
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2)) |
|
|
|
rx = np.array([[1, 0, 0, 0], |
|
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [ |
|
0, |
|
-np.sin(rad(anglex)), |
|
np.cos(rad(anglex)), |
|
0, |
|
], [0, 0, 0, 1]], np.float32) |
|
ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], |
|
[0, 1, 0, 0], [ |
|
-np.sin(rad(angley)), |
|
0, |
|
np.cos(rad(angley)), |
|
0, |
|
], [0, 0, 0, 1]], np.float32) |
|
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], |
|
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], |
|
[0, 0, 1, 0], [0, 0, 0, 1]], np.float32) |
|
r = rx.dot(ry).dot(rz) |
|
|
|
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) |
|
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter |
|
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter |
|
p3 = np.array([0, h, 0, 0], np.float32) - pcenter |
|
p4 = np.array([w, h, 0, 0], np.float32) - pcenter |
|
dst1 = r.dot(p1) |
|
dst2 = r.dot(p2) |
|
dst3 = r.dot(p3) |
|
dst4 = r.dot(p4) |
|
list_dst = np.array([dst1, dst2, dst3, dst4]) |
|
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) |
|
dst = np.zeros((4, 2), np.float32) |
|
|
|
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0] |
|
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1] |
|
|
|
warpR = cv2.getPerspectiveTransform(org, dst) |
|
|
|
dst1, dst2, dst3, dst4 = dst |
|
r1 = int(min(dst1[1], dst2[1])) |
|
r2 = int(max(dst3[1], dst4[1])) |
|
c1 = int(min(dst1[0], dst3[0])) |
|
c2 = int(max(dst2[0], dst4[0])) |
|
|
|
try: |
|
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1)) |
|
|
|
dx = -c1 |
|
dy = -r1 |
|
T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]]) |
|
ret = T1.dot(warpR) |
|
except: |
|
ratio = 1.0 |
|
T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]]) |
|
ret = T1 |
|
return ret, (-r1, -c1), ratio, dst |
|
|
|
|
|
def get_warpAffine(config): |
|
""" |
|
get_warpAffine |
|
""" |
|
anglez = config.anglez |
|
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0], |
|
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32) |
|
return rz |
|
|