|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
from paddle import nn |
|
from ppocr.modeling.transforms import build_transform |
|
from ppocr.modeling.backbones import build_backbone |
|
from ppocr.modeling.necks import build_neck |
|
from ppocr.modeling.heads import build_head |
|
from .base_model import BaseModel |
|
from ppocr.utils.save_load import load_pretrained_params |
|
|
|
__all__ = ['DistillationModel'] |
|
|
|
|
|
class DistillationModel(nn.Layer): |
|
def __init__(self, config): |
|
""" |
|
the module for OCR distillation. |
|
args: |
|
config (dict): the super parameters for module. |
|
""" |
|
super().__init__() |
|
self.model_list = [] |
|
self.model_name_list = [] |
|
for key in config["Models"]: |
|
model_config = config["Models"][key] |
|
freeze_params = False |
|
pretrained = None |
|
if "freeze_params" in model_config: |
|
freeze_params = model_config.pop("freeze_params") |
|
if "pretrained" in model_config: |
|
pretrained = model_config.pop("pretrained") |
|
model = BaseModel(model_config) |
|
if pretrained is not None: |
|
load_pretrained_params(model, pretrained) |
|
if freeze_params: |
|
for param in model.parameters(): |
|
param.trainable = False |
|
self.model_list.append(self.add_sublayer(key, model)) |
|
self.model_name_list.append(key) |
|
|
|
def forward(self, x, data=None): |
|
result_dict = dict() |
|
for idx, model_name in enumerate(self.model_name_list): |
|
result_dict[model_name] = self.model_list[idx](x, data) |
|
return result_dict |
|
|