|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/LBH1024/CAN/models/densenet.py |
|
|
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
|
|
class Bottleneck(nn.Layer): |
|
def __init__(self, nChannels, growthRate, use_dropout): |
|
super(Bottleneck, self).__init__() |
|
interChannels = 4 * growthRate |
|
self.bn1 = nn.BatchNorm2D(interChannels) |
|
self.conv1 = nn.Conv2D( |
|
nChannels, interChannels, kernel_size=1, |
|
bias_attr=None) |
|
self.bn2 = nn.BatchNorm2D(growthRate) |
|
self.conv2 = nn.Conv2D( |
|
interChannels, growthRate, kernel_size=3, padding=1, |
|
bias_attr=None) |
|
self.use_dropout = use_dropout |
|
self.dropout = nn.Dropout(p=0.2) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
if self.use_dropout: |
|
out = self.dropout(out) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
if self.use_dropout: |
|
out = self.dropout(out) |
|
out = paddle.concat([x, out], 1) |
|
return out |
|
|
|
|
|
class SingleLayer(nn.Layer): |
|
def __init__(self, nChannels, growthRate, use_dropout): |
|
super(SingleLayer, self).__init__() |
|
self.bn1 = nn.BatchNorm2D(nChannels) |
|
self.conv1 = nn.Conv2D( |
|
nChannels, growthRate, kernel_size=3, padding=1, bias_attr=False) |
|
|
|
self.use_dropout = use_dropout |
|
self.dropout = nn.Dropout(p=0.2) |
|
|
|
def forward(self, x): |
|
out = self.conv1(F.relu(x)) |
|
if self.use_dropout: |
|
out = self.dropout(out) |
|
|
|
out = paddle.concat([x, out], 1) |
|
return out |
|
|
|
|
|
class Transition(nn.Layer): |
|
def __init__(self, nChannels, out_channels, use_dropout): |
|
super(Transition, self).__init__() |
|
self.bn1 = nn.BatchNorm2D(out_channels) |
|
self.conv1 = nn.Conv2D( |
|
nChannels, out_channels, kernel_size=1, bias_attr=False) |
|
self.use_dropout = use_dropout |
|
self.dropout = nn.Dropout(p=0.2) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
if self.use_dropout: |
|
out = self.dropout(out) |
|
out = F.avg_pool2d(out, 2, ceil_mode=True, exclusive=False) |
|
return out |
|
|
|
|
|
class DenseNet(nn.Layer): |
|
def __init__(self, growthRate, reduction, bottleneck, use_dropout, |
|
input_channel, **kwargs): |
|
super(DenseNet, self).__init__() |
|
|
|
nDenseBlocks = 16 |
|
nChannels = 2 * growthRate |
|
|
|
self.conv1 = nn.Conv2D( |
|
input_channel, |
|
nChannels, |
|
kernel_size=7, |
|
padding=3, |
|
stride=2, |
|
bias_attr=False) |
|
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, |
|
bottleneck, use_dropout) |
|
nChannels += nDenseBlocks * growthRate |
|
out_channels = int(math.floor(nChannels * reduction)) |
|
self.trans1 = Transition(nChannels, out_channels, use_dropout) |
|
|
|
nChannels = out_channels |
|
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, |
|
bottleneck, use_dropout) |
|
nChannels += nDenseBlocks * growthRate |
|
out_channels = int(math.floor(nChannels * reduction)) |
|
self.trans2 = Transition(nChannels, out_channels, use_dropout) |
|
|
|
nChannels = out_channels |
|
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, |
|
bottleneck, use_dropout) |
|
self.out_channels = out_channels |
|
|
|
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck, |
|
use_dropout): |
|
layers = [] |
|
for i in range(int(nDenseBlocks)): |
|
if bottleneck: |
|
layers.append(Bottleneck(nChannels, growthRate, use_dropout)) |
|
else: |
|
layers.append(SingleLayer(nChannels, growthRate, use_dropout)) |
|
nChannels += growthRate |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, inputs): |
|
x, x_m, y = inputs |
|
out = self.conv1(x) |
|
out = F.relu(out) |
|
out = F.max_pool2d(out, 2, ceil_mode=True) |
|
out = self.dense1(out) |
|
out = self.trans1(out) |
|
out = self.dense2(out) |
|
out = self.trans2(out) |
|
out = self.dense3(out) |
|
return out, x_m, y |
|
|