|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from paddle import nn |
|
|
|
from ppocr.modeling.backbones.det_mobilenet_v3 import ResidualUnit, ConvBNLayer, make_divisible |
|
|
|
__all__ = ['MobileNetV3'] |
|
|
|
|
|
class MobileNetV3(nn.Layer): |
|
def __init__(self, |
|
in_channels=3, |
|
model_name='small', |
|
scale=0.5, |
|
large_stride=None, |
|
small_stride=None, |
|
disable_se=False, |
|
**kwargs): |
|
super(MobileNetV3, self).__init__() |
|
self.disable_se = disable_se |
|
if small_stride is None: |
|
small_stride = [2, 2, 2, 2] |
|
if large_stride is None: |
|
large_stride = [1, 2, 2, 2] |
|
|
|
assert isinstance(large_stride, list), "large_stride type must " \ |
|
"be list but got {}".format(type(large_stride)) |
|
assert isinstance(small_stride, list), "small_stride type must " \ |
|
"be list but got {}".format(type(small_stride)) |
|
assert len(large_stride) == 4, "large_stride length must be " \ |
|
"4 but got {}".format(len(large_stride)) |
|
assert len(small_stride) == 4, "small_stride length must be " \ |
|
"4 but got {}".format(len(small_stride)) |
|
|
|
if model_name == "large": |
|
cfg = [ |
|
|
|
[3, 16, 16, False, 'relu', large_stride[0]], |
|
[3, 64, 24, False, 'relu', (large_stride[1], 1)], |
|
[3, 72, 24, False, 'relu', 1], |
|
[5, 72, 40, True, 'relu', (large_stride[2], 1)], |
|
[5, 120, 40, True, 'relu', 1], |
|
[5, 120, 40, True, 'relu', 1], |
|
[3, 240, 80, False, 'hardswish', 1], |
|
[3, 200, 80, False, 'hardswish', 1], |
|
[3, 184, 80, False, 'hardswish', 1], |
|
[3, 184, 80, False, 'hardswish', 1], |
|
[3, 480, 112, True, 'hardswish', 1], |
|
[3, 672, 112, True, 'hardswish', 1], |
|
[5, 672, 160, True, 'hardswish', (large_stride[3], 1)], |
|
[5, 960, 160, True, 'hardswish', 1], |
|
[5, 960, 160, True, 'hardswish', 1], |
|
] |
|
cls_ch_squeeze = 960 |
|
elif model_name == "small": |
|
cfg = [ |
|
|
|
[3, 16, 16, True, 'relu', (small_stride[0], 1)], |
|
[3, 72, 24, False, 'relu', (small_stride[1], 1)], |
|
[3, 88, 24, False, 'relu', 1], |
|
[5, 96, 40, True, 'hardswish', (small_stride[2], 1)], |
|
[5, 240, 40, True, 'hardswish', 1], |
|
[5, 240, 40, True, 'hardswish', 1], |
|
[5, 120, 48, True, 'hardswish', 1], |
|
[5, 144, 48, True, 'hardswish', 1], |
|
[5, 288, 96, True, 'hardswish', (small_stride[3], 1)], |
|
[5, 576, 96, True, 'hardswish', 1], |
|
[5, 576, 96, True, 'hardswish', 1], |
|
] |
|
cls_ch_squeeze = 576 |
|
else: |
|
raise NotImplementedError("mode[" + model_name + |
|
"_model] is not implemented!") |
|
|
|
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] |
|
assert scale in supported_scale, \ |
|
"supported scales are {} but input scale is {}".format(supported_scale, scale) |
|
|
|
inplanes = 16 |
|
|
|
self.conv1 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=make_divisible(inplanes * scale), |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=1, |
|
if_act=True, |
|
act='hardswish') |
|
i = 0 |
|
block_list = [] |
|
inplanes = make_divisible(inplanes * scale) |
|
for (k, exp, c, se, nl, s) in cfg: |
|
se = se and not self.disable_se |
|
block_list.append( |
|
ResidualUnit( |
|
in_channels=inplanes, |
|
mid_channels=make_divisible(scale * exp), |
|
out_channels=make_divisible(scale * c), |
|
kernel_size=k, |
|
stride=s, |
|
use_se=se, |
|
act=nl)) |
|
inplanes = make_divisible(scale * c) |
|
i += 1 |
|
self.blocks = nn.Sequential(*block_list) |
|
|
|
self.conv2 = ConvBNLayer( |
|
in_channels=inplanes, |
|
out_channels=make_divisible(scale * cls_ch_squeeze), |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
if_act=True, |
|
act='hardswish') |
|
|
|
self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) |
|
self.out_channels = make_divisible(scale * cls_ch_squeeze) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.blocks(x) |
|
x = self.conv2(x) |
|
x = self.pool(x) |
|
return x |
|
|