|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py |
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
import numpy as np |
|
|
|
__all__ = ["ResNet31"] |
|
|
|
def conv3x3(in_channel, out_channel, stride=1, conv_weight_attr=None): |
|
return nn.Conv2D( |
|
in_channel, |
|
out_channel, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
weight_attr=conv_weight_attr, |
|
bias_attr=False) |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
expansion = 1 |
|
|
|
def __init__(self, in_channels, channels, stride=1, downsample=False, conv_weight_attr=None, bn_weight_attr=None): |
|
super().__init__() |
|
self.conv1 = conv3x3(in_channels, channels, stride, |
|
conv_weight_attr=conv_weight_attr) |
|
self.bn1 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr) |
|
self.relu = nn.ReLU() |
|
self.conv2 = conv3x3(channels, channels, |
|
conv_weight_attr=conv_weight_attr) |
|
self.bn2 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr) |
|
self.downsample = downsample |
|
if downsample: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2D( |
|
in_channels, |
|
channels * self.expansion, |
|
1, |
|
stride, |
|
weight_attr=conv_weight_attr, |
|
bias_attr=False), |
|
nn.BatchNorm2D(channels * self.expansion, weight_attr=bn_weight_attr)) |
|
else: |
|
self.downsample = nn.Sequential() |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet31(nn.Layer): |
|
''' |
|
Args: |
|
in_channels (int): Number of channels of input image tensor. |
|
layers (list[int]): List of BasicBlock number for each stage. |
|
channels (list[int]): List of out_channels of Conv2d layer. |
|
out_indices (None | Sequence[int]): Indices of output stages. |
|
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. |
|
init_type (None | str): the config to control the initialization. |
|
''' |
|
|
|
def __init__(self, |
|
in_channels=3, |
|
layers=[1, 2, 5, 3], |
|
channels=[64, 128, 256, 256, 512, 512, 512], |
|
out_indices=None, |
|
last_stage_pool=False, |
|
init_type=None): |
|
super(ResNet31, self).__init__() |
|
assert isinstance(in_channels, int) |
|
assert isinstance(last_stage_pool, bool) |
|
|
|
self.out_indices = out_indices |
|
self.last_stage_pool = last_stage_pool |
|
|
|
conv_weight_attr = None |
|
bn_weight_attr = None |
|
|
|
if init_type is not None: |
|
support_dict = ['KaimingNormal'] |
|
assert init_type in support_dict, Exception( |
|
"resnet31 only support {}".format(support_dict)) |
|
conv_weight_attr = nn.initializer.KaimingNormal() |
|
bn_weight_attr = ParamAttr(initializer=nn.initializer.Uniform(), learning_rate=1) |
|
|
|
|
|
self.conv1_1 = nn.Conv2D( |
|
in_channels, channels[0], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) |
|
self.bn1_1 = nn.BatchNorm2D(channels[0], weight_attr=bn_weight_attr) |
|
self.relu1_1 = nn.ReLU() |
|
|
|
self.conv1_2 = nn.Conv2D( |
|
channels[0], channels[1], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) |
|
self.bn1_2 = nn.BatchNorm2D(channels[1], weight_attr=bn_weight_attr) |
|
self.relu1_2 = nn.ReLU() |
|
|
|
|
|
self.pool2 = nn.MaxPool2D( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.block2 = self._make_layer(channels[1], channels[2], layers[0], |
|
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) |
|
self.conv2 = nn.Conv2D( |
|
channels[2], channels[2], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) |
|
self.bn2 = nn.BatchNorm2D(channels[2], weight_attr=bn_weight_attr) |
|
self.relu2 = nn.ReLU() |
|
|
|
|
|
self.pool3 = nn.MaxPool2D( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.block3 = self._make_layer(channels[2], channels[3], layers[1], |
|
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) |
|
self.conv3 = nn.Conv2D( |
|
channels[3], channels[3], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) |
|
self.bn3 = nn.BatchNorm2D(channels[3], weight_attr=bn_weight_attr) |
|
self.relu3 = nn.ReLU() |
|
|
|
|
|
self.pool4 = nn.MaxPool2D( |
|
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True) |
|
self.block4 = self._make_layer(channels[3], channels[4], layers[2], |
|
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) |
|
self.conv4 = nn.Conv2D( |
|
channels[4], channels[4], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) |
|
self.bn4 = nn.BatchNorm2D(channels[4], weight_attr=bn_weight_attr) |
|
self.relu4 = nn.ReLU() |
|
|
|
|
|
self.pool5 = None |
|
if self.last_stage_pool: |
|
self.pool5 = nn.MaxPool2D( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.block5 = self._make_layer(channels[4], channels[5], layers[3], |
|
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) |
|
self.conv5 = nn.Conv2D( |
|
channels[5], channels[5], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) |
|
self.bn5 = nn.BatchNorm2D(channels[5], weight_attr=bn_weight_attr) |
|
self.relu5 = nn.ReLU() |
|
|
|
self.out_channels = channels[-1] |
|
|
|
def _make_layer(self, input_channels, output_channels, blocks, conv_weight_attr=None, bn_weight_attr=None): |
|
layers = [] |
|
for _ in range(blocks): |
|
downsample = None |
|
if input_channels != output_channels: |
|
downsample = nn.Sequential( |
|
nn.Conv2D( |
|
input_channels, |
|
output_channels, |
|
kernel_size=1, |
|
stride=1, |
|
weight_attr=conv_weight_attr, |
|
bias_attr=False), |
|
nn.BatchNorm2D(output_channels, weight_attr=bn_weight_attr)) |
|
|
|
layers.append( |
|
BasicBlock( |
|
input_channels, output_channels, downsample=downsample, |
|
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)) |
|
input_channels = output_channels |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1_1(x) |
|
x = self.bn1_1(x) |
|
x = self.relu1_1(x) |
|
|
|
x = self.conv1_2(x) |
|
x = self.bn1_2(x) |
|
x = self.relu1_2(x) |
|
|
|
outs = [] |
|
for i in range(4): |
|
layer_index = i + 2 |
|
pool_layer = getattr(self, f'pool{layer_index}') |
|
block_layer = getattr(self, f'block{layer_index}') |
|
conv_layer = getattr(self, f'conv{layer_index}') |
|
bn_layer = getattr(self, f'bn{layer_index}') |
|
relu_layer = getattr(self, f'relu{layer_index}') |
|
|
|
if pool_layer is not None: |
|
x = pool_layer(x) |
|
x = block_layer(x) |
|
x = conv_layer(x) |
|
x = bn_layer(x) |
|
x = relu_layer(x) |
|
|
|
outs.append(x) |
|
|
|
if self.out_indices is not None: |
|
return tuple([outs[i] for i in self.out_indices]) |
|
|
|
return x |
|
|