|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/FangShancheng/ABINet/tree/main/modules |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
from paddle.nn.initializer import KaimingNormal |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
import numpy as np |
|
import math |
|
|
|
__all__ = ["ResNet45"] |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
return nn.Conv2D( |
|
in_planes, |
|
out_planes, |
|
kernel_size=1, |
|
stride=1, |
|
weight_attr=ParamAttr(initializer=KaimingNormal()), |
|
bias_attr=False) |
|
|
|
|
|
def conv3x3(in_channel, out_channel, stride=1): |
|
return nn.Conv2D( |
|
in_channel, |
|
out_channel, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=KaimingNormal()), |
|
bias_attr=False) |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
expansion = 1 |
|
|
|
def __init__(self, in_channels, channels, stride=1, downsample=None): |
|
super().__init__() |
|
self.conv1 = conv1x1(in_channels, channels) |
|
self.bn1 = nn.BatchNorm2D(channels) |
|
self.relu = nn.ReLU() |
|
self.conv2 = conv3x3(channels, channels, stride) |
|
self.bn2 = nn.BatchNorm2D(channels) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet45(nn.Layer): |
|
def __init__(self, |
|
in_channels=3, |
|
block=BasicBlock, |
|
layers=[3, 4, 6, 6, 3], |
|
strides=[2, 1, 2, 1, 1]): |
|
self.inplanes = 32 |
|
super(ResNet45, self).__init__() |
|
self.conv1 = nn.Conv2D( |
|
in_channels, |
|
32, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=KaimingNormal()), |
|
bias_attr=False) |
|
self.bn1 = nn.BatchNorm2D(32) |
|
self.relu = nn.ReLU() |
|
|
|
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) |
|
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) |
|
self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) |
|
self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) |
|
self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) |
|
self.out_channels = 512 |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
|
|
downsample = nn.Sequential( |
|
nn.Conv2D( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
weight_attr=ParamAttr(initializer=KaimingNormal()), |
|
bias_attr=False), |
|
nn.BatchNorm2D(planes * block.expansion), ) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.layer5(x) |
|
return x |
|
|