|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
from paddle import nn, ParamAttr |
|
from paddle.nn import functional as F |
|
import paddle |
|
import numpy as np |
|
|
|
__all__ = ["ResNetFPN"] |
|
|
|
|
|
class ResNetFPN(nn.Layer): |
|
def __init__(self, in_channels=1, layers=50, **kwargs): |
|
super(ResNetFPN, self).__init__() |
|
supported_layers = { |
|
18: { |
|
'depth': [2, 2, 2, 2], |
|
'block_class': BasicBlock |
|
}, |
|
34: { |
|
'depth': [3, 4, 6, 3], |
|
'block_class': BasicBlock |
|
}, |
|
50: { |
|
'depth': [3, 4, 6, 3], |
|
'block_class': BottleneckBlock |
|
}, |
|
101: { |
|
'depth': [3, 4, 23, 3], |
|
'block_class': BottleneckBlock |
|
}, |
|
152: { |
|
'depth': [3, 8, 36, 3], |
|
'block_class': BottleneckBlock |
|
} |
|
} |
|
stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)] |
|
num_filters = [64, 128, 256, 512] |
|
self.depth = supported_layers[layers]['depth'] |
|
self.F = [] |
|
self.conv = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=64, |
|
kernel_size=7, |
|
stride=2, |
|
act="relu", |
|
name="conv1") |
|
self.block_list = [] |
|
in_ch = 64 |
|
if layers >= 50: |
|
for block in range(len(self.depth)): |
|
for i in range(self.depth[block]): |
|
if layers in [101, 152] and block == 2: |
|
if i == 0: |
|
conv_name = "res" + str(block + 2) + "a" |
|
else: |
|
conv_name = "res" + str(block + 2) + "b" + str(i) |
|
else: |
|
conv_name = "res" + str(block + 2) + chr(97 + i) |
|
block_list = self.add_sublayer( |
|
"bottleneckBlock_{}_{}".format(block, i), |
|
BottleneckBlock( |
|
in_channels=in_ch, |
|
out_channels=num_filters[block], |
|
stride=stride_list[block] if i == 0 else 1, |
|
name=conv_name)) |
|
in_ch = num_filters[block] * 4 |
|
self.block_list.append(block_list) |
|
self.F.append(block_list) |
|
else: |
|
for block in range(len(self.depth)): |
|
for i in range(self.depth[block]): |
|
conv_name = "res" + str(block + 2) + chr(97 + i) |
|
if i == 0 and block != 0: |
|
stride = (2, 1) |
|
else: |
|
stride = (1, 1) |
|
basic_block = self.add_sublayer( |
|
conv_name, |
|
BasicBlock( |
|
in_channels=in_ch, |
|
out_channels=num_filters[block], |
|
stride=stride_list[block] if i == 0 else 1, |
|
is_first=block == i == 0, |
|
name=conv_name)) |
|
in_ch = basic_block.out_channels |
|
self.block_list.append(basic_block) |
|
out_ch_list = [in_ch // 4, in_ch // 2, in_ch] |
|
self.base_block = [] |
|
self.conv_trans = [] |
|
self.bn_block = [] |
|
for i in [-2, -3]: |
|
in_channels = out_ch_list[i + 1] + out_ch_list[i] |
|
|
|
self.base_block.append( |
|
self.add_sublayer( |
|
"F_{}_base_block_0".format(i), |
|
nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_ch_list[i], |
|
kernel_size=1, |
|
weight_attr=ParamAttr(trainable=True), |
|
bias_attr=ParamAttr(trainable=True)))) |
|
self.base_block.append( |
|
self.add_sublayer( |
|
"F_{}_base_block_1".format(i), |
|
nn.Conv2D( |
|
in_channels=out_ch_list[i], |
|
out_channels=out_ch_list[i], |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(trainable=True), |
|
bias_attr=ParamAttr(trainable=True)))) |
|
self.base_block.append( |
|
self.add_sublayer( |
|
"F_{}_base_block_2".format(i), |
|
nn.BatchNorm( |
|
num_channels=out_ch_list[i], |
|
act="relu", |
|
param_attr=ParamAttr(trainable=True), |
|
bias_attr=ParamAttr(trainable=True)))) |
|
self.base_block.append( |
|
self.add_sublayer( |
|
"F_{}_base_block_3".format(i), |
|
nn.Conv2D( |
|
in_channels=out_ch_list[i], |
|
out_channels=512, |
|
kernel_size=1, |
|
bias_attr=ParamAttr(trainable=True), |
|
weight_attr=ParamAttr(trainable=True)))) |
|
self.out_channels = 512 |
|
|
|
def __call__(self, x): |
|
x = self.conv(x) |
|
fpn_list = [] |
|
F = [] |
|
for i in range(len(self.depth)): |
|
fpn_list.append(np.sum(self.depth[:i + 1])) |
|
|
|
for i, block in enumerate(self.block_list): |
|
x = block(x) |
|
for number in fpn_list: |
|
if i + 1 == number: |
|
F.append(x) |
|
base = F[-1] |
|
|
|
j = 0 |
|
for i, block in enumerate(self.base_block): |
|
if i % 3 == 0 and i < 6: |
|
j = j + 1 |
|
b, c, w, h = F[-j - 1].shape |
|
if [w, h] == list(base.shape[2:]): |
|
base = base |
|
else: |
|
base = self.conv_trans[j - 1](base) |
|
base = self.bn_block[j - 1](base) |
|
base = paddle.concat([base, F[-j - 1]], axis=1) |
|
base = block(base) |
|
return base |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
groups=1, |
|
act=None, |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
self.conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=2 if stride == (1, 1) else kernel_size, |
|
dilation=2 if stride == (1, 1) else 1, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'), |
|
bias_attr=False, ) |
|
|
|
if name == "conv1": |
|
bn_name = "bn_" + name |
|
else: |
|
bn_name = "bn" + name[3:] |
|
self.bn = nn.BatchNorm( |
|
num_channels=out_channels, |
|
act=act, |
|
param_attr=ParamAttr(name=name + '.output.1.w_0'), |
|
bias_attr=ParamAttr(name=name + '.output.1.b_0'), |
|
moving_mean_name=bn_name + "_mean", |
|
moving_variance_name=bn_name + "_variance") |
|
|
|
def __call__(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class ShortCut(nn.Layer): |
|
def __init__(self, in_channels, out_channels, stride, name, is_first=False): |
|
super(ShortCut, self).__init__() |
|
self.use_conv = True |
|
|
|
if in_channels != out_channels or stride != 1 or is_first == True: |
|
if stride == (1, 1): |
|
self.conv = ConvBNLayer( |
|
in_channels, out_channels, 1, 1, name=name) |
|
else: |
|
self.conv = ConvBNLayer( |
|
in_channels, out_channels, 1, stride, name=name) |
|
else: |
|
self.use_conv = False |
|
|
|
def forward(self, x): |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__(self, in_channels, out_channels, stride, name): |
|
super(BottleneckBlock, self).__init__() |
|
self.conv0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
act='relu', |
|
name=name + "_branch2a") |
|
self.conv1 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
act='relu', |
|
name=name + "_branch2b") |
|
|
|
self.conv2 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels * 4, |
|
kernel_size=1, |
|
act=None, |
|
name=name + "_branch2c") |
|
|
|
self.short = ShortCut( |
|
in_channels=in_channels, |
|
out_channels=out_channels * 4, |
|
stride=stride, |
|
is_first=False, |
|
name=name + "_branch1") |
|
self.out_channels = out_channels * 4 |
|
|
|
def forward(self, x): |
|
y = self.conv0(x) |
|
y = self.conv1(y) |
|
y = self.conv2(y) |
|
y = y + self.short(x) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__(self, in_channels, out_channels, stride, name, is_first): |
|
super(BasicBlock, self).__init__() |
|
self.conv0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
act='relu', |
|
stride=stride, |
|
name=name + "_branch2a") |
|
self.conv1 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
act=None, |
|
name=name + "_branch2b") |
|
self.short = ShortCut( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=stride, |
|
is_first=is_first, |
|
name=name + "_branch1") |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x): |
|
y = self.conv0(x) |
|
y = self.conv1(y) |
|
y = y + self.short(x) |
|
return F.relu(y) |
|
|