|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
__all__ = ["ResNet"] |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
groups=1, |
|
is_vd_mode=False, |
|
act=None, |
|
name=None, ): |
|
super(ConvBNLayer, self).__init__() |
|
|
|
self.is_vd_mode = is_vd_mode |
|
self._pool2d_avg = nn.AvgPool2D( |
|
kernel_size=stride, stride=stride, padding=0, ceil_mode=True) |
|
self._conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=1 if is_vd_mode else stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + "_weights"), |
|
bias_attr=False) |
|
if name == "conv1": |
|
bn_name = "bn_" + name |
|
else: |
|
bn_name = "bn" + name[3:] |
|
self._batch_norm = nn.BatchNorm( |
|
out_channels, |
|
act=act, |
|
param_attr=ParamAttr(name=bn_name + '_scale'), |
|
bias_attr=ParamAttr(bn_name + '_offset'), |
|
moving_mean_name=bn_name + '_mean', |
|
moving_variance_name=bn_name + '_variance') |
|
|
|
def forward(self, inputs): |
|
if self.is_vd_mode: |
|
inputs = self._pool2d_avg(inputs) |
|
y = self._conv(inputs) |
|
y = self._batch_norm(y) |
|
return y |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
shortcut=True, |
|
if_first=False, |
|
name=None): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
self.conv0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
act='relu', |
|
name=name + "_branch2a") |
|
self.conv1 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
act='relu', |
|
name=name + "_branch2b") |
|
self.conv2 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels * 4, |
|
kernel_size=1, |
|
act=None, |
|
name=name + "_branch2c") |
|
|
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels * 4, |
|
kernel_size=1, |
|
stride=stride, |
|
is_vd_mode=not if_first and stride[0] != 1, |
|
name=name + "_branch1") |
|
|
|
self.shortcut = shortcut |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
|
|
conv1 = self.conv1(y) |
|
conv2 = self.conv2(conv1) |
|
|
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
y = paddle.add(x=short, y=conv2) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
shortcut=True, |
|
if_first=False, |
|
name=None): |
|
super(BasicBlock, self).__init__() |
|
self.stride = stride |
|
self.conv0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
act='relu', |
|
name=name + "_branch2a") |
|
self.conv1 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
act=None, |
|
name=name + "_branch2b") |
|
|
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=stride, |
|
is_vd_mode=not if_first and stride[0] != 1, |
|
name=name + "_branch1") |
|
|
|
self.shortcut = shortcut |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
conv1 = self.conv1(y) |
|
|
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
y = paddle.add(x=short, y=conv1) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class ResNet(nn.Layer): |
|
def __init__(self, in_channels=3, layers=50, **kwargs): |
|
super(ResNet, self).__init__() |
|
|
|
self.layers = layers |
|
supported_layers = [18, 34, 50, 101, 152, 200] |
|
assert layers in supported_layers, \ |
|
"supported layers are {} but input layer is {}".format( |
|
supported_layers, layers) |
|
|
|
if layers == 18: |
|
depth = [2, 2, 2, 2] |
|
elif layers == 34 or layers == 50: |
|
depth = [3, 4, 6, 3] |
|
elif layers == 101: |
|
depth = [3, 4, 23, 3] |
|
elif layers == 152: |
|
depth = [3, 8, 36, 3] |
|
elif layers == 200: |
|
depth = [3, 12, 48, 3] |
|
num_channels = [64, 256, 512, |
|
1024] if layers >= 50 else [64, 64, 128, 256] |
|
num_filters = [64, 128, 256, 512] |
|
|
|
self.conv1_1 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=32, |
|
kernel_size=3, |
|
stride=1, |
|
act='relu', |
|
name="conv1_1") |
|
self.conv1_2 = ConvBNLayer( |
|
in_channels=32, |
|
out_channels=32, |
|
kernel_size=3, |
|
stride=1, |
|
act='relu', |
|
name="conv1_2") |
|
self.conv1_3 = ConvBNLayer( |
|
in_channels=32, |
|
out_channels=64, |
|
kernel_size=3, |
|
stride=1, |
|
act='relu', |
|
name="conv1_3") |
|
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) |
|
|
|
self.block_list = [] |
|
if layers >= 50: |
|
for block in range(len(depth)): |
|
shortcut = False |
|
for i in range(depth[block]): |
|
if layers in [101, 152, 200] and block == 2: |
|
if i == 0: |
|
conv_name = "res" + str(block + 2) + "a" |
|
else: |
|
conv_name = "res" + str(block + 2) + "b" + str(i) |
|
else: |
|
conv_name = "res" + str(block + 2) + chr(97 + i) |
|
|
|
if i == 0 and block != 0: |
|
stride = (2, 1) |
|
else: |
|
stride = (1, 1) |
|
bottleneck_block = self.add_sublayer( |
|
'bb_%d_%d' % (block, i), |
|
BottleneckBlock( |
|
in_channels=num_channels[block] |
|
if i == 0 else num_filters[block] * 4, |
|
out_channels=num_filters[block], |
|
stride=stride, |
|
shortcut=shortcut, |
|
if_first=block == i == 0, |
|
name=conv_name)) |
|
shortcut = True |
|
self.block_list.append(bottleneck_block) |
|
self.out_channels = num_filters[block] * 4 |
|
else: |
|
for block in range(len(depth)): |
|
shortcut = False |
|
for i in range(depth[block]): |
|
conv_name = "res" + str(block + 2) + chr(97 + i) |
|
if i == 0 and block != 0: |
|
stride = (2, 1) |
|
else: |
|
stride = (1, 1) |
|
|
|
basic_block = self.add_sublayer( |
|
'bb_%d_%d' % (block, i), |
|
BasicBlock( |
|
in_channels=num_channels[block] |
|
if i == 0 else num_filters[block], |
|
out_channels=num_filters[block], |
|
stride=stride, |
|
shortcut=shortcut, |
|
if_first=block == i == 0, |
|
name=conv_name)) |
|
shortcut = True |
|
self.block_list.append(basic_block) |
|
self.out_channels = num_filters[block] |
|
self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) |
|
|
|
def forward(self, inputs): |
|
y = self.conv1_1(inputs) |
|
y = self.conv1_2(y) |
|
y = self.conv1_3(y) |
|
y = self.pool2d_max(y) |
|
for block in self.block_list: |
|
y = block(y) |
|
y = self.out_pool(y) |
|
return y |
|
|