Danieldu
add code
a89d9fd
raw
history blame
7.64 kB
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddle import nn
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction
from paddlenlp.transformers import AutoModel
__all__ = ["LayoutXLMForSer", "LayoutLMForSer"]
pretrained_model_dict = {
LayoutXLMModel: {
"base": "layoutxlm-base-uncased",
"vi": "vi-layoutxlm-base-uncased",
},
LayoutLMModel: {
"base": "layoutlm-base-uncased",
},
LayoutLMv2Model: {
"base": "layoutlmv2-base-uncased",
"vi": "vi-layoutlmv2-base-uncased",
},
}
class NLPBaseModel(nn.Layer):
def __init__(self,
base_model_class,
model_class,
mode="base",
type="ser",
pretrained=True,
checkpoints=None,
**kwargs):
super(NLPBaseModel, self).__init__()
if checkpoints is not None: # load the trained model
self.model = model_class.from_pretrained(checkpoints)
else: # load the pretrained-model
pretrained_model_name = pretrained_model_dict[base_model_class][
mode]
if pretrained is True:
base_model = base_model_class.from_pretrained(
pretrained_model_name)
else:
base_model = base_model_class.from_pretrained(pretrained)
if type == "ser":
self.model = model_class(
base_model, num_classes=kwargs["num_classes"], dropout=None)
else:
self.model = model_class(base_model, dropout=None)
self.out_channels = 1
self.use_visual_backbone = True
class LayoutLMForSer(NLPBaseModel):
def __init__(self,
num_classes,
pretrained=True,
checkpoints=None,
mode="base",
**kwargs):
super(LayoutLMForSer, self).__init__(
LayoutLMModel,
LayoutLMForTokenClassification,
mode,
"ser",
pretrained,
checkpoints,
num_classes=num_classes, )
self.use_visual_backbone = False
def forward(self, x):
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
position_ids=None,
output_hidden_states=False)
return x
class LayoutLMv2ForSer(NLPBaseModel):
def __init__(self,
num_classes,
pretrained=True,
checkpoints=None,
mode="base",
**kwargs):
super(LayoutLMv2ForSer, self).__init__(
LayoutLMv2Model,
LayoutLMv2ForTokenClassification,
mode,
"ser",
pretrained,
checkpoints,
num_classes=num_classes)
if hasattr(self.model.layoutlmv2, "use_visual_backbone"
) and self.model.layoutlmv2.use_visual_backbone is False:
self.use_visual_backbone = False
def forward(self, x):
if self.use_visual_backbone is True:
image = x[4]
else:
image = None
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=image,
position_ids=None,
head_mask=None,
labels=None)
if self.training:
res = {"backbone_out": x[0]}
res.update(x[1])
return res
else:
return x
class LayoutXLMForSer(NLPBaseModel):
def __init__(self,
num_classes,
pretrained=True,
checkpoints=None,
mode="base",
**kwargs):
super(LayoutXLMForSer, self).__init__(
LayoutXLMModel,
LayoutXLMForTokenClassification,
mode,
"ser",
pretrained,
checkpoints,
num_classes=num_classes)
if hasattr(self.model.layoutxlm, "use_visual_backbone"
) and self.model.layoutxlm.use_visual_backbone is False:
self.use_visual_backbone = False
def forward(self, x):
if self.use_visual_backbone is True:
image = x[4]
else:
image = None
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=image,
position_ids=None,
head_mask=None,
labels=None)
if self.training:
res = {"backbone_out": x[0]}
res.update(x[1])
return res
else:
return x
class LayoutLMv2ForRe(NLPBaseModel):
def __init__(self, pretrained=True, checkpoints=None, mode="base",
**kwargs):
super(LayoutLMv2ForRe, self).__init__(
LayoutLMv2Model, LayoutLMv2ForRelationExtraction, mode, "re",
pretrained, checkpoints)
if hasattr(self.model.layoutlmv2, "use_visual_backbone"
) and self.model.layoutlmv2.use_visual_backbone is False:
self.use_visual_backbone = False
def forward(self, x):
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=x[4],
position_ids=None,
head_mask=None,
labels=None,
entities=x[5],
relations=x[6])
return x
class LayoutXLMForRe(NLPBaseModel):
def __init__(self, pretrained=True, checkpoints=None, mode="base",
**kwargs):
super(LayoutXLMForRe, self).__init__(
LayoutXLMModel, LayoutXLMForRelationExtraction, mode, "re",
pretrained, checkpoints)
if hasattr(self.model.layoutxlm, "use_visual_backbone"
) and self.model.layoutxlm.use_visual_backbone is False:
self.use_visual_backbone = False
def forward(self, x):
if self.use_visual_backbone is True:
image = x[4]
entities = x[5]
relations = x[6]
else:
image = None
entities = x[4]
relations = x[5]
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=image,
position_ids=None,
head_mask=None,
labels=None,
entities=entities,
relations=relations)
return x