|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
groups=1, |
|
if_act=True, |
|
act=None, |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
self.if_act = if_act |
|
self.act = act |
|
self.conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + '_weights'), |
|
bias_attr=False) |
|
|
|
self.bn = nn.BatchNorm( |
|
num_channels=out_channels, |
|
act=act, |
|
param_attr=ParamAttr(name="bn_" + name + "_scale"), |
|
bias_attr=ParamAttr(name="bn_" + name + "_offset"), |
|
moving_mean_name="bn_" + name + "_mean", |
|
moving_variance_name="bn_" + name + "_variance") |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class SAST_Header1(nn.Layer): |
|
def __init__(self, in_channels, **kwargs): |
|
super(SAST_Header1, self).__init__() |
|
out_channels = [64, 64, 128] |
|
self.score_conv = nn.Sequential( |
|
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_score1'), |
|
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_score2'), |
|
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_score3'), |
|
ConvBNLayer(out_channels[2], 1, 3, 1, act=None, name='f_score4') |
|
) |
|
self.border_conv = nn.Sequential( |
|
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_border1'), |
|
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_border2'), |
|
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_border3'), |
|
ConvBNLayer(out_channels[2], 4, 3, 1, act=None, name='f_border4') |
|
) |
|
|
|
def forward(self, x): |
|
f_score = self.score_conv(x) |
|
f_score = F.sigmoid(f_score) |
|
f_border = self.border_conv(x) |
|
return f_score, f_border |
|
|
|
|
|
class SAST_Header2(nn.Layer): |
|
def __init__(self, in_channels, **kwargs): |
|
super(SAST_Header2, self).__init__() |
|
out_channels = [64, 64, 128] |
|
self.tvo_conv = nn.Sequential( |
|
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tvo1'), |
|
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tvo2'), |
|
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tvo3'), |
|
ConvBNLayer(out_channels[2], 8, 3, 1, act=None, name='f_tvo4') |
|
) |
|
self.tco_conv = nn.Sequential( |
|
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tco1'), |
|
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tco2'), |
|
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tco3'), |
|
ConvBNLayer(out_channels[2], 2, 3, 1, act=None, name='f_tco4') |
|
) |
|
|
|
def forward(self, x): |
|
f_tvo = self.tvo_conv(x) |
|
f_tco = self.tco_conv(x) |
|
return f_tvo, f_tco |
|
|
|
|
|
class SASTHead(nn.Layer): |
|
""" |
|
""" |
|
def __init__(self, in_channels, **kwargs): |
|
super(SASTHead, self).__init__() |
|
|
|
self.head1 = SAST_Header1(in_channels) |
|
self.head2 = SAST_Header2(in_channels) |
|
|
|
def forward(self, x, targets=None): |
|
f_score, f_border = self.head1(x) |
|
f_tvo, f_tco = self.head2(x) |
|
|
|
predicts = {} |
|
predicts['f_score'] = f_score |
|
predicts['f_border'] = f_border |
|
predicts['f_tvo'] = f_tvo |
|
predicts['f_tco'] = f_tco |
|
return predicts |