|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/FangShancheng/ABINet/tree/main/modules |
|
""" |
|
|
|
import math |
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle.nn import LayerList |
|
from ppocr.modeling.heads.rec_nrtr_head import TransformerBlock, PositionalEncoding |
|
|
|
|
|
class BCNLanguage(nn.Layer): |
|
def __init__(self, |
|
d_model=512, |
|
nhead=8, |
|
num_layers=4, |
|
dim_feedforward=2048, |
|
dropout=0., |
|
max_length=25, |
|
detach=True, |
|
num_classes=37): |
|
super().__init__() |
|
|
|
self.d_model = d_model |
|
self.detach = detach |
|
self.max_length = max_length + 1 |
|
self.proj = nn.Linear(num_classes, d_model, bias_attr=False) |
|
self.token_encoder = PositionalEncoding( |
|
dropout=0.1, dim=d_model, max_len=self.max_length) |
|
self.pos_encoder = PositionalEncoding( |
|
dropout=0, dim=d_model, max_len=self.max_length) |
|
|
|
self.decoder = nn.LayerList([ |
|
TransformerBlock( |
|
d_model=d_model, |
|
nhead=nhead, |
|
dim_feedforward=dim_feedforward, |
|
attention_dropout_rate=dropout, |
|
residual_dropout_rate=dropout, |
|
with_self_attn=False, |
|
with_cross_attn=True) for i in range(num_layers) |
|
]) |
|
|
|
self.cls = nn.Linear(d_model, num_classes) |
|
|
|
def forward(self, tokens, lengths): |
|
""" |
|
Args: |
|
tokens: (B, N, C) where N is length, B is batch size and C is classes number |
|
lengths: (B,) |
|
""" |
|
if self.detach: tokens = tokens.detach() |
|
embed = self.proj(tokens) |
|
embed = self.token_encoder(embed) |
|
padding_mask = _get_mask(lengths, self.max_length) |
|
zeros = paddle.zeros_like(embed) |
|
qeury = self.pos_encoder(zeros) |
|
for decoder_layer in self.decoder: |
|
qeury = decoder_layer(qeury, embed, cross_mask=padding_mask) |
|
output = qeury |
|
|
|
logits = self.cls(output) |
|
|
|
return output, logits |
|
|
|
|
|
def encoder_layer(in_c, out_c, k=3, s=2, p=1): |
|
return nn.Sequential( |
|
nn.Conv2D(in_c, out_c, k, s, p), nn.BatchNorm2D(out_c), nn.ReLU()) |
|
|
|
|
|
def decoder_layer(in_c, |
|
out_c, |
|
k=3, |
|
s=1, |
|
p=1, |
|
mode='nearest', |
|
scale_factor=None, |
|
size=None): |
|
align_corners = False if mode == 'nearest' else True |
|
return nn.Sequential( |
|
nn.Upsample( |
|
size=size, |
|
scale_factor=scale_factor, |
|
mode=mode, |
|
align_corners=align_corners), |
|
nn.Conv2D(in_c, out_c, k, s, p), |
|
nn.BatchNorm2D(out_c), |
|
nn.ReLU()) |
|
|
|
|
|
class PositionAttention(nn.Layer): |
|
def __init__(self, |
|
max_length, |
|
in_channels=512, |
|
num_channels=64, |
|
h=8, |
|
w=32, |
|
mode='nearest', |
|
**kwargs): |
|
super().__init__() |
|
self.max_length = max_length |
|
self.k_encoder = nn.Sequential( |
|
encoder_layer( |
|
in_channels, num_channels, s=(1, 2)), |
|
encoder_layer( |
|
num_channels, num_channels, s=(2, 2)), |
|
encoder_layer( |
|
num_channels, num_channels, s=(2, 2)), |
|
encoder_layer( |
|
num_channels, num_channels, s=(2, 2))) |
|
self.k_decoder = nn.Sequential( |
|
decoder_layer( |
|
num_channels, num_channels, scale_factor=2, mode=mode), |
|
decoder_layer( |
|
num_channels, num_channels, scale_factor=2, mode=mode), |
|
decoder_layer( |
|
num_channels, num_channels, scale_factor=2, mode=mode), |
|
decoder_layer( |
|
num_channels, in_channels, size=(h, w), mode=mode)) |
|
|
|
self.pos_encoder = PositionalEncoding( |
|
dropout=0, dim=in_channels, max_len=max_length) |
|
self.project = nn.Linear(in_channels, in_channels) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
k, v = x, x |
|
|
|
|
|
features = [] |
|
for i in range(0, len(self.k_encoder)): |
|
k = self.k_encoder[i](k) |
|
features.append(k) |
|
for i in range(0, len(self.k_decoder) - 1): |
|
k = self.k_decoder[i](k) |
|
|
|
k = k + features[len(self.k_decoder) - 2 - i] |
|
k = self.k_decoder[-1](k) |
|
|
|
|
|
|
|
zeros = paddle.zeros( |
|
(B, self.max_length, C), dtype=x.dtype) |
|
q = self.pos_encoder(zeros) |
|
q = self.project(q) |
|
|
|
|
|
attn_scores = q @k.flatten(2) |
|
attn_scores = attn_scores / (C**0.5) |
|
attn_scores = F.softmax(attn_scores, axis=-1) |
|
|
|
v = v.flatten(2).transpose([0, 2, 1]) |
|
attn_vecs = attn_scores @v |
|
|
|
return attn_vecs, attn_scores.reshape([0, self.max_length, H, W]) |
|
|
|
|
|
class ABINetHead(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
d_model=512, |
|
nhead=8, |
|
num_layers=3, |
|
dim_feedforward=2048, |
|
dropout=0.1, |
|
max_length=25, |
|
use_lang=False, |
|
iter_size=1): |
|
super().__init__() |
|
self.max_length = max_length + 1 |
|
self.pos_encoder = PositionalEncoding( |
|
dropout=0.1, dim=d_model, max_len=8 * 32) |
|
self.encoder = nn.LayerList([ |
|
TransformerBlock( |
|
d_model=d_model, |
|
nhead=nhead, |
|
dim_feedforward=dim_feedforward, |
|
attention_dropout_rate=dropout, |
|
residual_dropout_rate=dropout, |
|
with_self_attn=True, |
|
with_cross_attn=False) for i in range(num_layers) |
|
]) |
|
self.decoder = PositionAttention( |
|
max_length=max_length + 1, |
|
mode='nearest', ) |
|
self.out_channels = out_channels |
|
self.cls = nn.Linear(d_model, self.out_channels) |
|
self.use_lang = use_lang |
|
if use_lang: |
|
self.iter_size = iter_size |
|
self.language = BCNLanguage( |
|
d_model=d_model, |
|
nhead=nhead, |
|
num_layers=4, |
|
dim_feedforward=dim_feedforward, |
|
dropout=dropout, |
|
max_length=max_length, |
|
num_classes=self.out_channels) |
|
|
|
self.w_att_align = nn.Linear(2 * d_model, d_model) |
|
self.cls_align = nn.Linear(d_model, self.out_channels) |
|
|
|
def forward(self, x, targets=None): |
|
x = x.transpose([0, 2, 3, 1]) |
|
_, H, W, C = x.shape |
|
feature = x.flatten(1, 2) |
|
feature = self.pos_encoder(feature) |
|
for encoder_layer in self.encoder: |
|
feature = encoder_layer(feature) |
|
feature = feature.reshape([0, H, W, C]).transpose([0, 3, 1, 2]) |
|
v_feature, attn_scores = self.decoder( |
|
feature) |
|
vis_logits = self.cls(v_feature) |
|
logits = vis_logits |
|
vis_lengths = _get_length(vis_logits) |
|
if self.use_lang: |
|
align_logits = vis_logits |
|
align_lengths = vis_lengths |
|
all_l_res, all_a_res = [], [] |
|
for i in range(self.iter_size): |
|
tokens = F.softmax(align_logits, axis=-1) |
|
lengths = align_lengths |
|
lengths = paddle.clip( |
|
lengths, 2, self.max_length) |
|
l_feature, l_logits = self.language(tokens, lengths) |
|
|
|
|
|
all_l_res.append(l_logits) |
|
fuse = paddle.concat((l_feature, v_feature), -1) |
|
f_att = F.sigmoid(self.w_att_align(fuse)) |
|
output = f_att * v_feature + (1 - f_att) * l_feature |
|
align_logits = self.cls_align(output) |
|
|
|
align_lengths = _get_length(align_logits) |
|
all_a_res.append(align_logits) |
|
if self.training: |
|
return { |
|
'align': all_a_res, |
|
'lang': all_l_res, |
|
'vision': vis_logits |
|
} |
|
else: |
|
logits = align_logits |
|
if self.training: |
|
return logits |
|
else: |
|
return F.softmax(logits, -1) |
|
|
|
|
|
def _get_length(logit): |
|
""" Greed decoder to obtain length from logit""" |
|
out = (logit.argmax(-1) == 0) |
|
abn = out.any(-1) |
|
out_int = out.cast('int32') |
|
out = (out_int.cumsum(-1) == 1) & out |
|
out = out.cast('int32') |
|
out = out.argmax(-1) |
|
out = out + 1 |
|
len_seq = paddle.zeros_like(out) + logit.shape[1] |
|
out = paddle.where(abn, out, len_seq) |
|
return out |
|
|
|
|
|
def _get_mask(length, max_length): |
|
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). |
|
Unmasked positions are filled with float(0.0). |
|
""" |
|
length = length.unsqueeze(-1) |
|
B = paddle.shape(length)[0] |
|
grid = paddle.arange(0, max_length).unsqueeze(0).tile([B, 1]) |
|
zero_mask = paddle.zeros([B, max_length], dtype='float32') |
|
inf_mask = paddle.full([B, max_length], '-inf', dtype='float32') |
|
diag_mask = paddle.diag( |
|
paddle.full( |
|
[max_length], '-inf', dtype=paddle.float32), |
|
offset=0, |
|
name=None) |
|
mask = paddle.where(grid >= length, inf_mask, zero_mask) |
|
mask = mask.unsqueeze(1) + diag_mask |
|
return mask.unsqueeze(1) |
|
|