|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
|
|
import paddle |
|
from paddle import ParamAttr, nn |
|
from paddle.nn import functional as F |
|
|
|
|
|
def get_para_bias_attr(l2_decay, k): |
|
regularizer = paddle.regularizer.L2Decay(l2_decay) |
|
stdv = 1.0 / math.sqrt(k * 1.0) |
|
initializer = nn.initializer.Uniform(-stdv, stdv) |
|
weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer) |
|
bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer) |
|
return [weight_attr, bias_attr] |
|
|
|
|
|
class CTCHead(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
fc_decay=0.0004, |
|
mid_channels=None, |
|
return_feats=False, |
|
**kwargs): |
|
super(CTCHead, self).__init__() |
|
if mid_channels is None: |
|
weight_attr, bias_attr = get_para_bias_attr( |
|
l2_decay=fc_decay, k=in_channels) |
|
self.fc = nn.Linear( |
|
in_channels, |
|
out_channels, |
|
weight_attr=weight_attr, |
|
bias_attr=bias_attr) |
|
else: |
|
weight_attr1, bias_attr1 = get_para_bias_attr( |
|
l2_decay=fc_decay, k=in_channels) |
|
self.fc1 = nn.Linear( |
|
in_channels, |
|
mid_channels, |
|
weight_attr=weight_attr1, |
|
bias_attr=bias_attr1) |
|
|
|
weight_attr2, bias_attr2 = get_para_bias_attr( |
|
l2_decay=fc_decay, k=mid_channels) |
|
self.fc2 = nn.Linear( |
|
mid_channels, |
|
out_channels, |
|
weight_attr=weight_attr2, |
|
bias_attr=bias_attr2) |
|
self.out_channels = out_channels |
|
self.mid_channels = mid_channels |
|
self.return_feats = return_feats |
|
|
|
def forward(self, x, targets=None): |
|
if self.mid_channels is None: |
|
predicts = self.fc(x) |
|
else: |
|
x = self.fc1(x) |
|
predicts = self.fc2(x) |
|
|
|
if self.return_feats: |
|
result = (x, predicts) |
|
else: |
|
result = predicts |
|
if not self.training: |
|
predicts = F.softmax(predicts, axis=2) |
|
result = predicts |
|
|
|
return result |
|
|