Danieldu
add code
a89d9fd
raw
history blame
14.1 kB
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/FudanVI/FudanOCR/blob/main/text-gestalt/loss/transformer_english_decomposition.py
"""
import copy
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
def subsequent_mask(size):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask = paddle.ones([1, size, size], dtype='float32')
mask_inf = paddle.triu(
paddle.full(
shape=[1, size, size], dtype='float32', fill_value='-inf'),
diagonal=1)
mask = mask + mask_inf
padding_mask = paddle.equal(mask, paddle.to_tensor(1, dtype=mask.dtype))
return padding_mask
def clones(module, N):
return nn.LayerList([copy.deepcopy(module) for _ in range(N)])
def masked_fill(x, mask, value):
y = paddle.full(x.shape, value, x.dtype)
return paddle.where(mask, y, x)
def attention(query, key, value, mask=None, dropout=None, attention_map=None):
d_k = query.shape[-1]
scores = paddle.matmul(query,
paddle.transpose(key, [0, 1, 3, 2])) / math.sqrt(d_k)
if mask is not None:
scores = masked_fill(scores, mask == 0, float('-inf'))
else:
pass
p_attn = F.softmax(scores, axis=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return paddle.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Layer):
def __init__(self, h, d_model, dropout=0.1, compress_attention=False):
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout, mode="downscale_in_infer")
self.compress_attention = compress_attention
self.compress_attention_linear = nn.Linear(h, 1)
def forward(self, query, key, value, mask=None, attention_map=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.shape[0]
query, key, value = \
[paddle.transpose(l(x).reshape([nbatches, -1, self.h, self.d_k]), [0,2,1,3])
for l, x in zip(self.linears, (query, key, value))]
x, attention_map = attention(
query,
key,
value,
mask=mask,
dropout=self.dropout,
attention_map=attention_map)
x = paddle.reshape(
paddle.transpose(x, [0, 2, 1, 3]),
[nbatches, -1, self.h * self.d_k])
return self.linears[-1](x), attention_map
class ResNet(nn.Layer):
def __init__(self, num_in, block, layers):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2D(num_in, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2D(64, use_global_stats=True)
self.relu1 = nn.ReLU()
self.pool = nn.MaxPool2D((2, 2), (2, 2))
self.conv2 = nn.Conv2D(64, 128, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2D(128, use_global_stats=True)
self.relu2 = nn.ReLU()
self.layer1_pool = nn.MaxPool2D((2, 2), (2, 2))
self.layer1 = self._make_layer(block, 128, 256, layers[0])
self.layer1_conv = nn.Conv2D(256, 256, 3, 1, 1)
self.layer1_bn = nn.BatchNorm2D(256, use_global_stats=True)
self.layer1_relu = nn.ReLU()
self.layer2_pool = nn.MaxPool2D((2, 2), (2, 2))
self.layer2 = self._make_layer(block, 256, 256, layers[1])
self.layer2_conv = nn.Conv2D(256, 256, 3, 1, 1)
self.layer2_bn = nn.BatchNorm2D(256, use_global_stats=True)
self.layer2_relu = nn.ReLU()
self.layer3_pool = nn.MaxPool2D((2, 2), (2, 2))
self.layer3 = self._make_layer(block, 256, 512, layers[2])
self.layer3_conv = nn.Conv2D(512, 512, 3, 1, 1)
self.layer3_bn = nn.BatchNorm2D(512, use_global_stats=True)
self.layer3_relu = nn.ReLU()
self.layer4_pool = nn.MaxPool2D((2, 2), (2, 2))
self.layer4 = self._make_layer(block, 512, 512, layers[3])
self.layer4_conv2 = nn.Conv2D(512, 1024, 3, 1, 1)
self.layer4_conv2_bn = nn.BatchNorm2D(1024, use_global_stats=True)
self.layer4_conv2_relu = nn.ReLU()
def _make_layer(self, block, inplanes, planes, blocks):
if inplanes != planes:
downsample = nn.Sequential(
nn.Conv2D(inplanes, planes, 3, 1, 1),
nn.BatchNorm2D(
planes, use_global_stats=True), )
else:
downsample = None
layers = []
layers.append(block(inplanes, planes, downsample))
for i in range(1, blocks):
layers.append(block(planes, planes, downsample=None))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.layer1_pool(x)
x = self.layer1(x)
x = self.layer1_conv(x)
x = self.layer1_bn(x)
x = self.layer1_relu(x)
x = self.layer2(x)
x = self.layer2_conv(x)
x = self.layer2_bn(x)
x = self.layer2_relu(x)
x = self.layer3(x)
x = self.layer3_conv(x)
x = self.layer3_bn(x)
x = self.layer3_relu(x)
x = self.layer4(x)
x = self.layer4_conv2(x)
x = self.layer4_conv2_bn(x)
x = self.layer4_conv2_relu(x)
return x
class Bottleneck(nn.Layer):
def __init__(self, input_dim):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2D(input_dim, input_dim, 1)
self.bn1 = nn.BatchNorm2D(input_dim, use_global_stats=True)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2D(input_dim, input_dim, 3, 1, 1)
self.bn2 = nn.BatchNorm2D(input_dim, use_global_stats=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class PositionalEncoding(nn.Layer):
"Implement the PE function."
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout, mode="downscale_in_infer")
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.unsqueeze(pe, 0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :paddle.shape(x)[1]]
return self.dropout(x)
class PositionwiseFeedForward(nn.Layer):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout, mode="downscale_in_infer")
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Generator(nn.Layer):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
self.relu = nn.ReLU()
def forward(self, x):
out = self.proj(x)
return out
class Embeddings(nn.Layer):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
embed = self.lut(x) * math.sqrt(self.d_model)
return embed
class LayerNorm(nn.Layer):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = self.create_parameter(
shape=[features],
default_initializer=paddle.nn.initializer.Constant(1.0))
self.b_2 = self.create_parameter(
shape=[features],
default_initializer=paddle.nn.initializer.Constant(0.0))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class Decoder(nn.Layer):
def __init__(self):
super(Decoder, self).__init__()
self.mask_multihead = MultiHeadedAttention(
h=16, d_model=1024, dropout=0.1)
self.mul_layernorm1 = LayerNorm(1024)
self.multihead = MultiHeadedAttention(h=16, d_model=1024, dropout=0.1)
self.mul_layernorm2 = LayerNorm(1024)
self.pff = PositionwiseFeedForward(1024, 2048)
self.mul_layernorm3 = LayerNorm(1024)
def forward(self, text, conv_feature, attention_map=None):
text_max_length = text.shape[1]
mask = subsequent_mask(text_max_length)
result = text
result = self.mul_layernorm1(result + self.mask_multihead(
text, text, text, mask=mask)[0])
b, c, h, w = conv_feature.shape
conv_feature = paddle.transpose(
conv_feature.reshape([b, c, h * w]), [0, 2, 1])
word_image_align, attention_map = self.multihead(
result,
conv_feature,
conv_feature,
mask=None,
attention_map=attention_map)
result = self.mul_layernorm2(result + word_image_align)
result = self.mul_layernorm3(result + self.pff(result))
return result, attention_map
class BasicBlock(nn.Layer):
def __init__(self, inplanes, planes, downsample):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2D(
inplanes, planes, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2D(planes, use_global_stats=True)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2D(
planes, planes, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2D(planes, use_global_stats=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample != None:
residual = self.downsample(residual)
out += residual
out = self.relu(out)
return out
class Encoder(nn.Layer):
def __init__(self):
super(Encoder, self).__init__()
self.cnn = ResNet(num_in=1, block=BasicBlock, layers=[1, 2, 5, 3])
def forward(self, input):
conv_result = self.cnn(input)
return conv_result
class Transformer(nn.Layer):
def __init__(self, in_channels=1, alphabet='0123456789'):
super(Transformer, self).__init__()
self.alphabet = alphabet
word_n_class = self.get_alphabet_len()
self.embedding_word_with_upperword = Embeddings(512, word_n_class)
self.pe = PositionalEncoding(dim=512, dropout=0.1, max_len=5000)
self.encoder = Encoder()
self.decoder = Decoder()
self.generator_word_with_upperword = Generator(1024, word_n_class)
for p in self.parameters():
if p.dim() > 1:
nn.initializer.XavierNormal(p)
def get_alphabet_len(self):
return len(self.alphabet)
def forward(self, image, text_length, text_input, attention_map=None):
if image.shape[1] == 3:
R = image[:, 0:1, :, :]
G = image[:, 1:2, :, :]
B = image[:, 2:3, :, :]
image = 0.299 * R + 0.587 * G + 0.114 * B
conv_feature = self.encoder(image) # batch, 1024, 8, 32
max_length = max(text_length)
text_input = text_input[:, :max_length]
text_embedding = self.embedding_word_with_upperword(
text_input) # batch, text_max_length, 512
postion_embedding = self.pe(
paddle.zeros(text_embedding.shape)) # batch, text_max_length, 512
text_input_with_pe = paddle.concat([text_embedding, postion_embedding],
2) # batch, text_max_length, 1024
batch, seq_len, _ = text_input_with_pe.shape
text_input_with_pe, word_attention_map = self.decoder(
text_input_with_pe, conv_feature)
word_decoder_result = self.generator_word_with_upperword(
text_input_with_pe)
if self.training:
total_length = paddle.sum(text_length)
probs_res = paddle.zeros([total_length, self.get_alphabet_len()])
start = 0
for index, length in enumerate(text_length):
length = int(length.numpy())
probs_res[start:start + length, :] = word_decoder_result[
index, 0:0 + length, :]
start = start + length
return probs_res, word_attention_map, None
else:
return word_decoder_result