|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
import os |
|
import sys |
|
|
|
import math |
|
from paddle.nn.initializer import TruncatedNormal, Constant, Normal |
|
ones_ = Constant(value=1.) |
|
zeros_ = Constant(value=0.) |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..'))) |
|
|
|
|
|
class Conv_BN_ReLU(nn.Layer): |
|
def __init__(self, |
|
in_planes, |
|
out_planes, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0): |
|
super(Conv_BN_ReLU, self).__init__() |
|
self.conv = nn.Conv2D( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
bias_attr=False) |
|
self.bn = nn.BatchNorm2D(out_planes) |
|
self.relu = nn.ReLU() |
|
|
|
for m in self.sublayers(): |
|
if isinstance(m, nn.Conv2D): |
|
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels |
|
normal_ = Normal(mean=0.0, std=math.sqrt(2. / n)) |
|
normal_(m.weight) |
|
elif isinstance(m, nn.BatchNorm2D): |
|
zeros_(m.bias) |
|
ones_(m.weight) |
|
|
|
def forward(self, x): |
|
return self.relu(self.bn(self.conv(x))) |
|
|
|
|
|
class FPEM(nn.Layer): |
|
def __init__(self, in_channels, out_channels): |
|
super(FPEM, self).__init__() |
|
planes = out_channels |
|
self.dwconv3_1 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
groups=planes, |
|
bias_attr=False) |
|
self.smooth_layer3_1 = Conv_BN_ReLU(planes, planes) |
|
|
|
self.dwconv2_1 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
groups=planes, |
|
bias_attr=False) |
|
self.smooth_layer2_1 = Conv_BN_ReLU(planes, planes) |
|
|
|
self.dwconv1_1 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
groups=planes, |
|
bias_attr=False) |
|
self.smooth_layer1_1 = Conv_BN_ReLU(planes, planes) |
|
|
|
self.dwconv2_2 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=planes, |
|
bias_attr=False) |
|
self.smooth_layer2_2 = Conv_BN_ReLU(planes, planes) |
|
|
|
self.dwconv3_2 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=planes, |
|
bias_attr=False) |
|
self.smooth_layer3_2 = Conv_BN_ReLU(planes, planes) |
|
|
|
self.dwconv4_2 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=planes, |
|
bias_attr=False) |
|
self.smooth_layer4_2 = Conv_BN_ReLU(planes, planes) |
|
|
|
def _upsample_add(self, x, y): |
|
return F.upsample(x, scale_factor=2, mode='bilinear') + y |
|
|
|
def forward(self, f1, f2, f3, f4): |
|
|
|
f3 = self.smooth_layer3_1(self.dwconv3_1(self._upsample_add(f4, f3))) |
|
f2 = self.smooth_layer2_1(self.dwconv2_1(self._upsample_add(f3, f2))) |
|
f1 = self.smooth_layer1_1(self.dwconv1_1(self._upsample_add(f2, f1))) |
|
|
|
|
|
f2 = self.smooth_layer2_2(self.dwconv2_2(self._upsample_add(f2, f1))) |
|
f3 = self.smooth_layer3_2(self.dwconv3_2(self._upsample_add(f3, f2))) |
|
f4 = self.smooth_layer4_2(self.dwconv4_2(self._upsample_add(f4, f3))) |
|
|
|
return f1, f2, f3, f4 |
|
|
|
|
|
class CTFPN(nn.Layer): |
|
def __init__(self, in_channels, out_channel=128): |
|
super(CTFPN, self).__init__() |
|
self.out_channels = out_channel * 4 |
|
|
|
self.reduce_layer1 = Conv_BN_ReLU(in_channels[0], 128) |
|
self.reduce_layer2 = Conv_BN_ReLU(in_channels[1], 128) |
|
self.reduce_layer3 = Conv_BN_ReLU(in_channels[2], 128) |
|
self.reduce_layer4 = Conv_BN_ReLU(in_channels[3], 128) |
|
|
|
self.fpem1 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128) |
|
self.fpem2 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128) |
|
|
|
def _upsample(self, x, scale=1): |
|
return F.upsample(x, scale_factor=scale, mode='bilinear') |
|
|
|
def forward(self, f): |
|
|
|
f1 = self.reduce_layer1(f[0]) |
|
f2 = self.reduce_layer2(f[1]) |
|
f3 = self.reduce_layer3(f[2]) |
|
f4 = self.reduce_layer4(f[3]) |
|
|
|
|
|
f1_1, f2_1, f3_1, f4_1 = self.fpem1(f1, f2, f3, f4) |
|
f1_2, f2_2, f3_2, f4_2 = self.fpem2(f1_1, f2_1, f3_1, f4_1) |
|
|
|
|
|
f1 = f1_1 + f1_2 |
|
f2 = f2_1 + f2_2 |
|
f3 = f3_1 + f3_2 |
|
f4 = f4_1 + f4_2 |
|
|
|
f2 = self._upsample(f2, scale=2) |
|
f3 = self._upsample(f3, scale=4) |
|
f4 = self._upsample(f4, scale=8) |
|
ff = paddle.concat((f1, f2, f3, f4), 1) |
|
return ff |
|
|