|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/FudanVI/FudanOCR/blob/main/scene-text-telescope/model/tbsrn.py |
|
""" |
|
|
|
import math |
|
import warnings |
|
import numpy as np |
|
import paddle |
|
from paddle import nn |
|
import string |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
from .tps_spatial_transformer import TPSSpatialTransformer |
|
from .stn import STN as STNHead |
|
from .tsrn import GruBlock, mish, UpsampleBLock |
|
from ppocr.modeling.heads.sr_rensnet_transformer import Transformer, LayerNorm, \ |
|
PositionwiseFeedForward, MultiHeadedAttention |
|
|
|
|
|
def positionalencoding2d(d_model, height, width): |
|
""" |
|
:param d_model: dimension of the model |
|
:param height: height of the positions |
|
:param width: width of the positions |
|
:return: d_model*height*width position matrix |
|
""" |
|
if d_model % 4 != 0: |
|
raise ValueError("Cannot use sin/cos positional encoding with " |
|
"odd dimension (got dim={:d})".format(d_model)) |
|
pe = paddle.zeros([d_model, height, width]) |
|
|
|
d_model = int(d_model / 2) |
|
div_term = paddle.exp(paddle.arange(0., d_model, 2) * |
|
-(math.log(10000.0) / d_model)) |
|
pos_w = paddle.arange(0., width, dtype='float32').unsqueeze(1) |
|
pos_h = paddle.arange(0., height, dtype='float32').unsqueeze(1) |
|
|
|
pe[0:d_model:2, :, :] = paddle.sin(pos_w * div_term).transpose([1, 0]).unsqueeze(1).tile([1, height, 1]) |
|
pe[1:d_model:2, :, :] = paddle.cos(pos_w * div_term).transpose([1, 0]).unsqueeze(1).tile([1, height, 1]) |
|
pe[d_model::2, :, :] = paddle.sin(pos_h * div_term).transpose([1, 0]).unsqueeze(2).tile([1, 1, width]) |
|
pe[d_model + 1::2, :, :] = paddle.cos(pos_h * div_term).transpose([1, 0]).unsqueeze(2).tile([1, 1, width]) |
|
|
|
return pe |
|
|
|
|
|
class FeatureEnhancer(nn.Layer): |
|
|
|
def __init__(self): |
|
super(FeatureEnhancer, self).__init__() |
|
|
|
self.multihead = MultiHeadedAttention(h=4, d_model=128, dropout=0.1) |
|
self.mul_layernorm1 = LayerNorm(features=128) |
|
|
|
self.pff = PositionwiseFeedForward(128, 128) |
|
self.mul_layernorm3 = LayerNorm(features=128) |
|
|
|
self.linear = nn.Linear(128, 64) |
|
|
|
def forward(self, conv_feature): |
|
''' |
|
text : (batch, seq_len, embedding_size) |
|
global_info: (batch, embedding_size, 1, 1) |
|
conv_feature: (batch, channel, H, W) |
|
''' |
|
batch = conv_feature.shape[0] |
|
position2d = positionalencoding2d(64, 16, 64).cast('float32').unsqueeze(0).reshape([1, 64, 1024]) |
|
position2d = position2d.tile([batch, 1, 1]) |
|
conv_feature = paddle.concat([conv_feature, position2d], 1) |
|
result = conv_feature.transpose([0, 2, 1]) |
|
origin_result = result |
|
result = self.mul_layernorm1(origin_result + self.multihead(result, result, result, mask=None)[0]) |
|
origin_result = result |
|
result = self.mul_layernorm3(origin_result + self.pff(result)) |
|
result = self.linear(result) |
|
return result.transpose([0, 2, 1]) |
|
|
|
|
|
def str_filt(str_, voc_type): |
|
alpha_dict = { |
|
'digit': string.digits, |
|
'lower': string.digits + string.ascii_lowercase, |
|
'upper': string.digits + string.ascii_letters, |
|
'all': string.digits + string.ascii_letters + string.punctuation |
|
} |
|
if voc_type == 'lower': |
|
str_ = str_.lower() |
|
for char in str_: |
|
if char not in alpha_dict[voc_type]: |
|
str_ = str_.replace(char, '') |
|
str_ = str_.lower() |
|
return str_ |
|
|
|
|
|
class TBSRN(nn.Layer): |
|
def __init__(self, |
|
in_channels=3, |
|
scale_factor=2, |
|
width=128, |
|
height=32, |
|
STN=True, |
|
srb_nums=5, |
|
mask=False, |
|
hidden_units=32, |
|
infer_mode=False): |
|
super(TBSRN, self).__init__() |
|
in_planes = 3 |
|
if mask: |
|
in_planes = 4 |
|
assert math.log(scale_factor, 2) % 1 == 0 |
|
upsample_block_num = int(math.log(scale_factor, 2)) |
|
self.block1 = nn.Sequential( |
|
nn.Conv2D(in_planes, 2 * hidden_units, kernel_size=9, padding=4), |
|
nn.PReLU() |
|
|
|
) |
|
self.srb_nums = srb_nums |
|
for i in range(srb_nums): |
|
setattr(self, 'block%d' % (i + 2), RecurrentResidualBlock(2 * hidden_units)) |
|
|
|
setattr(self, 'block%d' % (srb_nums + 2), |
|
nn.Sequential( |
|
nn.Conv2D(2 * hidden_units, 2 * hidden_units, kernel_size=3, padding=1), |
|
nn.BatchNorm2D(2 * hidden_units) |
|
)) |
|
|
|
|
|
block_ = [UpsampleBLock(2 * hidden_units, 2) for _ in range(upsample_block_num)] |
|
block_.append(nn.Conv2D(2 * hidden_units, in_planes, kernel_size=9, padding=4)) |
|
setattr(self, 'block%d' % (srb_nums + 3), nn.Sequential(*block_)) |
|
self.tps_inputsize = [height // scale_factor, width // scale_factor] |
|
tps_outputsize = [height // scale_factor, width // scale_factor] |
|
num_control_points = 20 |
|
tps_margins = [0.05, 0.05] |
|
self.stn = STN |
|
self.out_channels = in_channels |
|
if self.stn: |
|
self.tps = TPSSpatialTransformer( |
|
output_image_size=tuple(tps_outputsize), |
|
num_control_points=num_control_points, |
|
margins=tuple(tps_margins)) |
|
|
|
self.stn_head = STNHead( |
|
in_channels=in_planes, |
|
num_ctrlpoints=num_control_points, |
|
activation='none') |
|
self.infer_mode = infer_mode |
|
|
|
self.english_alphabet = '-0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' |
|
self.english_dict = {} |
|
for index in range(len(self.english_alphabet)): |
|
self.english_dict[self.english_alphabet[index]] = index |
|
transformer = Transformer(alphabet='-0123456789abcdefghijklmnopqrstuvwxyz') |
|
self.transformer = transformer |
|
for param in self.transformer.parameters(): |
|
param.trainable = False |
|
|
|
def label_encoder(self, label): |
|
batch = len(label) |
|
|
|
length = [len(i) for i in label] |
|
length_tensor = paddle.to_tensor(length, dtype='int64') |
|
|
|
max_length = max(length) |
|
input_tensor = np.zeros((batch, max_length)) |
|
for i in range(batch): |
|
for j in range(length[i] - 1): |
|
input_tensor[i][j + 1] = self.english_dict[label[i][j]] |
|
|
|
text_gt = [] |
|
for i in label: |
|
for j in i: |
|
text_gt.append(self.english_dict[j]) |
|
text_gt = paddle.to_tensor(text_gt, dtype='int64') |
|
|
|
input_tensor = paddle.to_tensor(input_tensor, dtype='int64') |
|
return length_tensor, input_tensor, text_gt |
|
|
|
def forward(self, x): |
|
output = {} |
|
if self.infer_mode: |
|
output["lr_img"] = x |
|
y = x |
|
else: |
|
output["lr_img"] = x[0] |
|
output["hr_img"] = x[1] |
|
y = x[0] |
|
if self.stn and self.training: |
|
_, ctrl_points_x = self.stn_head(y) |
|
y, _ = self.tps(y, ctrl_points_x) |
|
block = {'1': self.block1(y)} |
|
for i in range(self.srb_nums + 1): |
|
block[str(i + 2)] = getattr(self, |
|
'block%d' % (i + 2))(block[str(i + 1)]) |
|
|
|
block[str(self.srb_nums + 3)] = getattr(self, 'block%d' % (self.srb_nums + 3)) \ |
|
((block['1'] + block[str(self.srb_nums + 2)])) |
|
|
|
sr_img = paddle.tanh(block[str(self.srb_nums + 3)]) |
|
output["sr_img"] = sr_img |
|
|
|
if self.training: |
|
hr_img = x[1] |
|
|
|
|
|
label = [str_filt(i, 'lower') + '-' for i in x[2]] |
|
length_tensor, input_tensor, text_gt = self.label_encoder(label) |
|
hr_pred, word_attention_map_gt, hr_correct_list = self.transformer(hr_img, length_tensor, |
|
input_tensor) |
|
sr_pred, word_attention_map_pred, sr_correct_list = self.transformer(sr_img, length_tensor, |
|
input_tensor) |
|
output["hr_img"] = hr_img |
|
output["hr_pred"] = hr_pred |
|
output["text_gt"] = text_gt |
|
output["word_attention_map_gt"] = word_attention_map_gt |
|
output["sr_pred"] = sr_pred |
|
output["word_attention_map_pred"] = word_attention_map_pred |
|
|
|
return output |
|
|
|
|
|
class RecurrentResidualBlock(nn.Layer): |
|
def __init__(self, channels): |
|
super(RecurrentResidualBlock, self).__init__() |
|
self.conv1 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) |
|
self.bn1 = nn.BatchNorm2D(channels) |
|
self.gru1 = GruBlock(channels, channels) |
|
|
|
self.prelu = mish() |
|
self.conv2 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) |
|
self.bn2 = nn.BatchNorm2D(channels) |
|
self.gru2 = GruBlock(channels, channels) |
|
self.feature_enhancer = FeatureEnhancer() |
|
|
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
paddle.nn.initializer.XavierUniform(p) |
|
|
|
def forward(self, x): |
|
residual = self.conv1(x) |
|
residual = self.bn1(residual) |
|
residual = self.prelu(residual) |
|
residual = self.conv2(residual) |
|
residual = self.bn2(residual) |
|
|
|
size = residual.shape |
|
residual = residual.reshape([size[0], size[1], -1]) |
|
residual = self.feature_enhancer(residual) |
|
residual = residual.reshape([size[0], size[1], size[2], size[3]]) |
|
return x + residual |