Danieldu
add code
a89d9fd
raw
history blame
24.9 kB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import platform
import cv2
import numpy as np
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
import time
import random
from ppocr.utils.logging import get_logger
def str2bool(v):
return v.lower() in ("true", "t", "1")
def init_args():
parser = argparse.ArgumentParser()
# params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--use_xpu", type=str2bool, default=False)
parser.add_argument("--use_npu", type=str2bool, default=False)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--min_subgraph_size", type=int, default=15)
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--gpu_mem", type=int, default=500)
parser.add_argument("--gpu_id", type=int, default=0)
# params for text detector
parser.add_argument("--image_dir", type=str)
parser.add_argument("--page_num", type=int, default=0)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str)
parser.add_argument("--det_limit_side_len", type=float, default=960)
parser.add_argument("--det_limit_type", type=str, default='max')
parser.add_argument("--det_box_type", type=str, default='quad')
# DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
parser.add_argument("--max_batch_size", type=int, default=10)
parser.add_argument("--use_dilation", type=str2bool, default=False)
parser.add_argument("--det_db_score_mode", type=str, default="fast")
# EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
# SAST parmas
parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
# PSE parmas
parser.add_argument("--det_pse_thresh", type=float, default=0)
parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
parser.add_argument("--det_pse_min_area", type=float, default=16)
parser.add_argument("--det_pse_scale", type=int, default=1)
# FCE parmas
parser.add_argument("--scales", type=list, default=[8, 16, 32])
parser.add_argument("--alpha", type=float, default=1.0)
parser.add_argument("--beta", type=float, default=1.0)
parser.add_argument("--fourier_degree", type=int, default=5)
# params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_inverse", type=str2bool, default=True)
parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
parser.add_argument("--rec_batch_num", type=int, default=6)
parser.add_argument("--max_text_length", type=int, default=25)
parser.add_argument(
"--rec_char_dict_path",
type=str,
default="./ppocr/utils/ppocr_keys_v1.txt")
parser.add_argument("--use_space_char", type=str2bool, default=True)
parser.add_argument(
"--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
parser.add_argument("--drop_score", type=float, default=0.5)
# params for e2e
parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
parser.add_argument("--e2e_model_dir", type=str)
parser.add_argument("--e2e_limit_side_len", type=float, default=768)
parser.add_argument("--e2e_limit_type", type=str, default='max')
# PGNet parmas
parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
parser.add_argument(
"--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
# params for text classifier
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
parser.add_argument("--cls_model_dir", type=str)
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=['0', '180'])
parser.add_argument("--cls_batch_num", type=int, default=6)
parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--cpu_threads", type=int, default=10)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
parser.add_argument("--warmup", type=str2bool, default=False)
# SR parmas
parser.add_argument("--sr_model_dir", type=str)
parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
parser.add_argument("--sr_batch_num", type=int, default=1)
#
parser.add_argument(
"--draw_img_save_dir", type=str, default="./inference_results")
parser.add_argument("--save_crop_res", type=str2bool, default=False)
parser.add_argument("--crop_res_save_dir", type=str, default="./output")
# multi-process
parser.add_argument("--use_mp", type=str2bool, default=False)
parser.add_argument("--total_process_num", type=int, default=1)
parser.add_argument("--process_id", type=int, default=0)
parser.add_argument("--benchmark", type=str2bool, default=False)
parser.add_argument("--save_log_path", type=str, default="./log_output/")
parser.add_argument("--show_log", type=str2bool, default=True)
parser.add_argument("--use_onnx", type=str2bool, default=False)
return parser
def parse_args():
parser = init_args()
return parser.parse_args()
def create_predictor(args, mode, logger):
if mode == "det":
model_dir = args.det_model_dir
elif mode == 'cls':
model_dir = args.cls_model_dir
elif mode == 'rec':
model_dir = args.rec_model_dir
elif mode == 'table':
model_dir = args.table_model_dir
elif mode == 'ser':
model_dir = args.ser_model_dir
elif mode == 're':
model_dir = args.re_model_dir
elif mode == "sr":
model_dir = args.sr_model_dir
elif mode == 'layout':
model_dir = args.layout_model_dir
else:
model_dir = args.e2e_model_dir
if model_dir is None:
logger.info("not find {} model file path {}".format(mode, model_dir))
sys.exit(0)
if args.use_onnx:
import onnxruntime as ort
model_file_path = model_dir
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
sess = ort.InferenceSession(model_file_path)
return sess, sess.get_inputs()[0], None, None
else:
file_names = ['model', 'inference']
for file_name in file_names:
model_file_path = '{}/{}.pdmodel'.format(model_dir, file_name)
params_file_path = '{}/{}.pdiparams'.format(model_dir, file_name)
if os.path.exists(model_file_path) and os.path.exists(
params_file_path):
break
if not os.path.exists(model_file_path):
raise ValueError(
"not find model.pdmodel or inference.pdmodel in {}".format(
model_dir))
if not os.path.exists(params_file_path):
raise ValueError(
"not find model.pdiparams or inference.pdiparams in {}".format(
model_dir))
config = inference.Config(model_file_path, params_file_path)
if hasattr(args, 'precision'):
if args.precision == "fp16" and args.use_tensorrt:
precision = inference.PrecisionType.Half
elif args.precision == "int8":
precision = inference.PrecisionType.Int8
else:
precision = inference.PrecisionType.Float32
else:
precision = inference.PrecisionType.Float32
if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
logger.warning(
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
)
config.enable_use_gpu(args.gpu_mem, args.gpu_id)
if args.use_tensorrt:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=precision,
max_batch_size=args.max_batch_size,
min_subgraph_size=args.
min_subgraph_size, # skip the minmum trt subgraph
use_calib_mode=False)
# collect shape
trt_shape_f = os.path.join(model_dir,
f"{mode}_trt_dynamic_shape.txt")
if not os.path.exists(trt_shape_f):
config.collect_shape_range_info(trt_shape_f)
logger.info(
f"collect dynamic shape info into : {trt_shape_f}")
try:
config.enable_tuned_tensorrt_dynamic_shape(trt_shape_f,
True)
except Exception as E:
logger.info(E)
logger.info("Please keep your paddlepaddle-gpu >= 2.3.0!")
elif args.use_npu:
config.enable_custom_device("npu")
elif args.use_xpu:
config.enable_xpu(10 * 1024 * 1024)
else:
config.disable_gpu()
if args.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
if args.precision == "fp16":
config.enable_mkldnn_bfloat16()
if hasattr(args, "cpu_threads"):
config.set_cpu_math_library_num_threads(args.cpu_threads)
else:
# default cpu threads as 10
config.set_cpu_math_library_num_threads(10)
# enable memory optim
config.enable_memory_optim()
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.delete_pass("matmul_transpose_reshape_fuse_pass")
if mode == 're':
config.delete_pass("simplify_with_basic_ops_pass")
if mode == 'table':
config.delete_pass("fc_fuse_pass") # not supported for table
config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
if mode in ['ser', 're']:
input_tensor = []
for name in input_names:
input_tensor.append(predictor.get_input_handle(name))
else:
for name in input_names:
input_tensor = predictor.get_input_handle(name)
output_tensors = get_output_tensors(args, mode, predictor)
return predictor, input_tensor, output_tensors, config
def get_output_tensors(args, mode, predictor):
output_names = predictor.get_output_names()
output_tensors = []
if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
output_name = 'softmax_0.tmp_0'
if output_name in output_names:
return [predictor.get_output_handle(output_name)]
else:
for output_name in output_names:
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
else:
for output_name in output_names:
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return output_tensors
def get_infer_gpuid():
sysstr = platform.system()
if sysstr == "Windows":
return 0
if not paddle.fluid.core.is_compiled_with_rocm():
cmd = "env | grep CUDA_VISIBLE_DEVICES"
else:
cmd = "env | grep HIP_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0:
return 0
else:
gpu_id = env_cuda[0].strip().split("=")[1]
return int(gpu_id[0])
def draw_e2e_res(dt_boxes, strs, img_path):
src_im = cv2.imread(img_path)
for box, str in zip(dt_boxes, strs):
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
cv2.putText(
src_im,
str,
org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
fontFace=cv2.FONT_HERSHEY_COMPLEX,
fontScale=0.7,
color=(0, 255, 0),
thickness=1)
return src_im
def draw_text_det_res(dt_boxes, img):
for box in dt_boxes:
box = np.array(box).astype(np.int32).reshape(-1, 2)
cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
return img
def resize_img(img, input_size=600):
"""
resize img and limit the longest side of the image to input_size
"""
img = np.array(img)
im_shape = img.shape
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return img
def draw_ocr(image,
boxes,
txts=None,
scores=None,
drop_score=0.5,
font_path="./doc/fonts/simfang.ttf"):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
drop_score(float): only scores greater than drop_threshold will be visualized
font_path: the path of font which is used to draw text
return(array):
the visualized img
"""
if scores is None:
scores = [1] * len(boxes)
box_num = len(boxes)
for i in range(box_num):
if scores is not None and (scores[i] < drop_score or
math.isnan(scores[i])):
continue
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
if txts is not None:
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
txts,
scores,
img_h=img.shape[0],
img_w=600,
threshold=drop_score,
font_path=font_path)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
return img
return image
def draw_ocr_box_txt(image,
boxes,
txts=None,
scores=None,
drop_score=0.5,
font_path="./doc/fonts/simfang.ttf"):
h, w = image.height, image.width
img_left = image.copy()
img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
if txts is None or len(txts) != len(boxes):
txts = [None] * len(boxes)
for idx, (box, txt) in enumerate(zip(boxes, txts)):
if scores is not None and scores[idx] < drop_score:
continue
color = (random.randint(0, 255), random.randint(0, 255),
random.randint(0, 255))
draw_left.polygon(box, fill=color)
img_right_text = draw_box_txt_fine((w, h), box, txt, font_path)
pts = np.array(box, np.int32).reshape((-1, 1, 2))
cv2.polylines(img_right_text, [pts], True, color, 1)
img_right = cv2.bitwise_and(img_right, img_right_text)
img_left = Image.blend(image, img_left, 0.5)
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
img_show.paste(img_left, (0, 0, w, h))
img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
return np.array(img_show)
def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"):
box_height = int(
math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][1])**2))
box_width = int(
math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][1])**2))
if box_height > 2 * box_width and box_height > 30:
img_text = Image.new('RGB', (box_height, box_width), (255, 255, 255))
draw_text = ImageDraw.Draw(img_text)
if txt:
font = create_font(txt, (box_height, box_width), font_path)
draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
img_text = img_text.transpose(Image.ROTATE_270)
else:
img_text = Image.new('RGB', (box_width, box_height), (255, 255, 255))
draw_text = ImageDraw.Draw(img_text)
if txt:
font = create_font(txt, (box_width, box_height), font_path)
draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
pts1 = np.float32(
[[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]])
pts2 = np.array(box, dtype=np.float32)
M = cv2.getPerspectiveTransform(pts1, pts2)
img_text = np.array(img_text, dtype=np.uint8)
img_right_text = cv2.warpPerspective(
img_text,
M,
img_size,
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(255, 255, 255))
return img_right_text
def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"):
font_size = int(sz[1] * 0.99)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
length = font.getsize(txt)[0]
if length > sz[0]:
font_size = int(font_size * sz[0] / length)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
return font
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
def text_visual(texts,
scores,
img_h=400,
img_w=600,
threshold=0.,
font_path="./doc/simfang.ttf"):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
font_path: the path of font which is used to draw text
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
def base64_to_cv2(b64str):
import base64
data = base64.b64decode(b64str.encode('utf8'))
data = np.frombuffer(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
def draw_boxes(image, boxes, scores=None, drop_score=0.5):
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score:
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
return image
def get_rotate_crop_image(img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
assert len(points) == 4, "shape of points must be 4*2"
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
def get_minarea_rect_crop(img, points):
bounding_box = cv2.minAreaRect(np.array(points).astype(np.int32))
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_a, index_b, index_c, index_d = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_a = 0
index_d = 1
else:
index_a = 1
index_d = 0
if points[3][1] > points[2][1]:
index_b = 2
index_c = 3
else:
index_b = 3
index_c = 2
box = [points[index_a], points[index_b], points[index_c], points[index_d]]
crop_img = get_rotate_crop_image(img, np.array(box))
return crop_img
def check_gpu(use_gpu):
if use_gpu and not paddle.is_compiled_with_cuda():
use_gpu = False
return use_gpu
if __name__ == '__main__':
pass