Danieldu
add code
a89d9fd
raw
history blame
9.15 kB
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/fce_loss.py
"""
import numpy as np
from paddle import nn
import paddle
import paddle.nn.functional as F
from functools import partial
def multi_apply(func, *args, **kwargs):
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
class FCELoss(nn.Layer):
"""The class for implementing FCENet loss
FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped
Text Detection
[https://arxiv.org/abs/2104.10442]
Args:
fourier_degree (int) : The maximum Fourier transform degree k.
num_sample (int) : The sampling points number of regression
loss. If it is too small, fcenet tends to be overfitting.
ohem_ratio (float): the negative/positive ratio in OHEM.
"""
def __init__(self, fourier_degree, num_sample, ohem_ratio=3.):
super().__init__()
self.fourier_degree = fourier_degree
self.num_sample = num_sample
self.ohem_ratio = ohem_ratio
def forward(self, preds, labels):
assert isinstance(preds, dict)
preds = preds['levels']
p3_maps, p4_maps, p5_maps = labels[1:]
assert p3_maps[0].shape[0] == 4 * self.fourier_degree + 5,\
'fourier degree not equal in FCEhead and FCEtarget'
# to tensor
gts = [p3_maps, p4_maps, p5_maps]
for idx, maps in enumerate(gts):
gts[idx] = paddle.to_tensor(np.stack(maps))
losses = multi_apply(self.forward_single, preds, gts)
loss_tr = paddle.to_tensor(0.).astype('float32')
loss_tcl = paddle.to_tensor(0.).astype('float32')
loss_reg_x = paddle.to_tensor(0.).astype('float32')
loss_reg_y = paddle.to_tensor(0.).astype('float32')
loss_all = paddle.to_tensor(0.).astype('float32')
for idx, loss in enumerate(losses):
loss_all += sum(loss)
if idx == 0:
loss_tr += sum(loss)
elif idx == 1:
loss_tcl += sum(loss)
elif idx == 2:
loss_reg_x += sum(loss)
else:
loss_reg_y += sum(loss)
results = dict(
loss=loss_all,
loss_text=loss_tr,
loss_center=loss_tcl,
loss_reg_x=loss_reg_x,
loss_reg_y=loss_reg_y, )
return results
def forward_single(self, pred, gt):
cls_pred = paddle.transpose(pred[0], (0, 2, 3, 1))
reg_pred = paddle.transpose(pred[1], (0, 2, 3, 1))
gt = paddle.transpose(gt, (0, 2, 3, 1))
k = 2 * self.fourier_degree + 1
tr_pred = paddle.reshape(cls_pred[:, :, :, :2], (-1, 2))
tcl_pred = paddle.reshape(cls_pred[:, :, :, 2:], (-1, 2))
x_pred = paddle.reshape(reg_pred[:, :, :, 0:k], (-1, k))
y_pred = paddle.reshape(reg_pred[:, :, :, k:2 * k], (-1, k))
tr_mask = gt[:, :, :, :1].reshape([-1])
tcl_mask = gt[:, :, :, 1:2].reshape([-1])
train_mask = gt[:, :, :, 2:3].reshape([-1])
x_map = paddle.reshape(gt[:, :, :, 3:3 + k], (-1, k))
y_map = paddle.reshape(gt[:, :, :, 3 + k:], (-1, k))
tr_train_mask = (train_mask * tr_mask).astype('bool')
tr_train_mask2 = paddle.concat(
[tr_train_mask.unsqueeze(1), tr_train_mask.unsqueeze(1)], axis=1)
# tr loss
loss_tr = self.ohem(tr_pred, tr_mask, train_mask)
# tcl loss
loss_tcl = paddle.to_tensor(0.).astype('float32')
tr_neg_mask = tr_train_mask.logical_not()
tr_neg_mask2 = paddle.concat(
[tr_neg_mask.unsqueeze(1), tr_neg_mask.unsqueeze(1)], axis=1)
if tr_train_mask.sum().item() > 0:
loss_tcl_pos = F.cross_entropy(
tcl_pred.masked_select(tr_train_mask2).reshape([-1, 2]),
tcl_mask.masked_select(tr_train_mask).astype('int64'))
loss_tcl_neg = F.cross_entropy(
tcl_pred.masked_select(tr_neg_mask2).reshape([-1, 2]),
tcl_mask.masked_select(tr_neg_mask).astype('int64'))
loss_tcl = loss_tcl_pos + 0.5 * loss_tcl_neg
# regression loss
loss_reg_x = paddle.to_tensor(0.).astype('float32')
loss_reg_y = paddle.to_tensor(0.).astype('float32')
if tr_train_mask.sum().item() > 0:
weight = (tr_mask.masked_select(tr_train_mask.astype('bool'))
.astype('float32') + tcl_mask.masked_select(
tr_train_mask.astype('bool')).astype('float32')) / 2
weight = weight.reshape([-1, 1])
ft_x, ft_y = self.fourier2poly(x_map, y_map)
ft_x_pre, ft_y_pre = self.fourier2poly(x_pred, y_pred)
dim = ft_x.shape[1]
tr_train_mask3 = paddle.concat(
[tr_train_mask.unsqueeze(1) for i in range(dim)], axis=1)
loss_reg_x = paddle.mean(weight * F.smooth_l1_loss(
ft_x_pre.masked_select(tr_train_mask3).reshape([-1, dim]),
ft_x.masked_select(tr_train_mask3).reshape([-1, dim]),
reduction='none'))
loss_reg_y = paddle.mean(weight * F.smooth_l1_loss(
ft_y_pre.masked_select(tr_train_mask3).reshape([-1, dim]),
ft_y.masked_select(tr_train_mask3).reshape([-1, dim]),
reduction='none'))
return loss_tr, loss_tcl, loss_reg_x, loss_reg_y
def ohem(self, predict, target, train_mask):
pos = (target * train_mask).astype('bool')
neg = ((1 - target) * train_mask).astype('bool')
pos2 = paddle.concat([pos.unsqueeze(1), pos.unsqueeze(1)], axis=1)
neg2 = paddle.concat([neg.unsqueeze(1), neg.unsqueeze(1)], axis=1)
n_pos = pos.astype('float32').sum()
if n_pos.item() > 0:
loss_pos = F.cross_entropy(
predict.masked_select(pos2).reshape([-1, 2]),
target.masked_select(pos).astype('int64'),
reduction='sum')
loss_neg = F.cross_entropy(
predict.masked_select(neg2).reshape([-1, 2]),
target.masked_select(neg).astype('int64'),
reduction='none')
n_neg = min(
int(neg.astype('float32').sum().item()),
int(self.ohem_ratio * n_pos.astype('float32')))
else:
loss_pos = paddle.to_tensor(0.)
loss_neg = F.cross_entropy(
predict.masked_select(neg2).reshape([-1, 2]),
target.masked_select(neg).astype('int64'),
reduction='none')
n_neg = 100
if len(loss_neg) > n_neg:
loss_neg, _ = paddle.topk(loss_neg, n_neg)
return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).astype('float32')
def fourier2poly(self, real_maps, imag_maps):
"""Transform Fourier coefficient maps to polygon maps.
Args:
real_maps (tensor): A map composed of the real parts of the
Fourier coefficients, whose shape is (-1, 2k+1)
imag_maps (tensor):A map composed of the imag parts of the
Fourier coefficients, whose shape is (-1, 2k+1)
Returns
x_maps (tensor): A map composed of the x value of the polygon
represented by n sample points (xn, yn), whose shape is (-1, n)
y_maps (tensor): A map composed of the y value of the polygon
represented by n sample points (xn, yn), whose shape is (-1, n)
"""
k_vect = paddle.arange(
-self.fourier_degree, self.fourier_degree + 1,
dtype='float32').reshape([-1, 1])
i_vect = paddle.arange(
0, self.num_sample, dtype='float32').reshape([1, -1])
transform_matrix = 2 * np.pi / self.num_sample * paddle.matmul(k_vect,
i_vect)
x1 = paddle.einsum('ak, kn-> an', real_maps,
paddle.cos(transform_matrix))
x2 = paddle.einsum('ak, kn-> an', imag_maps,
paddle.sin(transform_matrix))
y1 = paddle.einsum('ak, kn-> an', real_maps,
paddle.sin(transform_matrix))
y2 = paddle.einsum('ak, kn-> an', imag_maps,
paddle.cos(transform_matrix))
x_maps = x1 - x2
y_maps = y1 + y2
return x_maps, y_maps