|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/fce_loss.py |
|
""" |
|
|
|
import numpy as np |
|
from paddle import nn |
|
import paddle |
|
import paddle.nn.functional as F |
|
from functools import partial |
|
|
|
|
|
def multi_apply(func, *args, **kwargs): |
|
pfunc = partial(func, **kwargs) if kwargs else func |
|
map_results = map(pfunc, *args) |
|
return tuple(map(list, zip(*map_results))) |
|
|
|
|
|
class FCELoss(nn.Layer): |
|
"""The class for implementing FCENet loss |
|
FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped |
|
Text Detection |
|
|
|
[https://arxiv.org/abs/2104.10442] |
|
|
|
Args: |
|
fourier_degree (int) : The maximum Fourier transform degree k. |
|
num_sample (int) : The sampling points number of regression |
|
loss. If it is too small, fcenet tends to be overfitting. |
|
ohem_ratio (float): the negative/positive ratio in OHEM. |
|
""" |
|
|
|
def __init__(self, fourier_degree, num_sample, ohem_ratio=3.): |
|
super().__init__() |
|
self.fourier_degree = fourier_degree |
|
self.num_sample = num_sample |
|
self.ohem_ratio = ohem_ratio |
|
|
|
def forward(self, preds, labels): |
|
assert isinstance(preds, dict) |
|
preds = preds['levels'] |
|
|
|
p3_maps, p4_maps, p5_maps = labels[1:] |
|
assert p3_maps[0].shape[0] == 4 * self.fourier_degree + 5,\ |
|
'fourier degree not equal in FCEhead and FCEtarget' |
|
|
|
|
|
gts = [p3_maps, p4_maps, p5_maps] |
|
for idx, maps in enumerate(gts): |
|
gts[idx] = paddle.to_tensor(np.stack(maps)) |
|
|
|
losses = multi_apply(self.forward_single, preds, gts) |
|
|
|
loss_tr = paddle.to_tensor(0.).astype('float32') |
|
loss_tcl = paddle.to_tensor(0.).astype('float32') |
|
loss_reg_x = paddle.to_tensor(0.).astype('float32') |
|
loss_reg_y = paddle.to_tensor(0.).astype('float32') |
|
loss_all = paddle.to_tensor(0.).astype('float32') |
|
|
|
for idx, loss in enumerate(losses): |
|
loss_all += sum(loss) |
|
if idx == 0: |
|
loss_tr += sum(loss) |
|
elif idx == 1: |
|
loss_tcl += sum(loss) |
|
elif idx == 2: |
|
loss_reg_x += sum(loss) |
|
else: |
|
loss_reg_y += sum(loss) |
|
|
|
results = dict( |
|
loss=loss_all, |
|
loss_text=loss_tr, |
|
loss_center=loss_tcl, |
|
loss_reg_x=loss_reg_x, |
|
loss_reg_y=loss_reg_y, ) |
|
return results |
|
|
|
def forward_single(self, pred, gt): |
|
cls_pred = paddle.transpose(pred[0], (0, 2, 3, 1)) |
|
reg_pred = paddle.transpose(pred[1], (0, 2, 3, 1)) |
|
gt = paddle.transpose(gt, (0, 2, 3, 1)) |
|
|
|
k = 2 * self.fourier_degree + 1 |
|
tr_pred = paddle.reshape(cls_pred[:, :, :, :2], (-1, 2)) |
|
tcl_pred = paddle.reshape(cls_pred[:, :, :, 2:], (-1, 2)) |
|
x_pred = paddle.reshape(reg_pred[:, :, :, 0:k], (-1, k)) |
|
y_pred = paddle.reshape(reg_pred[:, :, :, k:2 * k], (-1, k)) |
|
|
|
tr_mask = gt[:, :, :, :1].reshape([-1]) |
|
tcl_mask = gt[:, :, :, 1:2].reshape([-1]) |
|
train_mask = gt[:, :, :, 2:3].reshape([-1]) |
|
x_map = paddle.reshape(gt[:, :, :, 3:3 + k], (-1, k)) |
|
y_map = paddle.reshape(gt[:, :, :, 3 + k:], (-1, k)) |
|
|
|
tr_train_mask = (train_mask * tr_mask).astype('bool') |
|
tr_train_mask2 = paddle.concat( |
|
[tr_train_mask.unsqueeze(1), tr_train_mask.unsqueeze(1)], axis=1) |
|
|
|
loss_tr = self.ohem(tr_pred, tr_mask, train_mask) |
|
|
|
loss_tcl = paddle.to_tensor(0.).astype('float32') |
|
tr_neg_mask = tr_train_mask.logical_not() |
|
tr_neg_mask2 = paddle.concat( |
|
[tr_neg_mask.unsqueeze(1), tr_neg_mask.unsqueeze(1)], axis=1) |
|
if tr_train_mask.sum().item() > 0: |
|
loss_tcl_pos = F.cross_entropy( |
|
tcl_pred.masked_select(tr_train_mask2).reshape([-1, 2]), |
|
tcl_mask.masked_select(tr_train_mask).astype('int64')) |
|
loss_tcl_neg = F.cross_entropy( |
|
tcl_pred.masked_select(tr_neg_mask2).reshape([-1, 2]), |
|
tcl_mask.masked_select(tr_neg_mask).astype('int64')) |
|
loss_tcl = loss_tcl_pos + 0.5 * loss_tcl_neg |
|
|
|
|
|
loss_reg_x = paddle.to_tensor(0.).astype('float32') |
|
loss_reg_y = paddle.to_tensor(0.).astype('float32') |
|
if tr_train_mask.sum().item() > 0: |
|
weight = (tr_mask.masked_select(tr_train_mask.astype('bool')) |
|
.astype('float32') + tcl_mask.masked_select( |
|
tr_train_mask.astype('bool')).astype('float32')) / 2 |
|
weight = weight.reshape([-1, 1]) |
|
|
|
ft_x, ft_y = self.fourier2poly(x_map, y_map) |
|
ft_x_pre, ft_y_pre = self.fourier2poly(x_pred, y_pred) |
|
|
|
dim = ft_x.shape[1] |
|
|
|
tr_train_mask3 = paddle.concat( |
|
[tr_train_mask.unsqueeze(1) for i in range(dim)], axis=1) |
|
|
|
loss_reg_x = paddle.mean(weight * F.smooth_l1_loss( |
|
ft_x_pre.masked_select(tr_train_mask3).reshape([-1, dim]), |
|
ft_x.masked_select(tr_train_mask3).reshape([-1, dim]), |
|
reduction='none')) |
|
loss_reg_y = paddle.mean(weight * F.smooth_l1_loss( |
|
ft_y_pre.masked_select(tr_train_mask3).reshape([-1, dim]), |
|
ft_y.masked_select(tr_train_mask3).reshape([-1, dim]), |
|
reduction='none')) |
|
|
|
return loss_tr, loss_tcl, loss_reg_x, loss_reg_y |
|
|
|
def ohem(self, predict, target, train_mask): |
|
|
|
pos = (target * train_mask).astype('bool') |
|
neg = ((1 - target) * train_mask).astype('bool') |
|
|
|
pos2 = paddle.concat([pos.unsqueeze(1), pos.unsqueeze(1)], axis=1) |
|
neg2 = paddle.concat([neg.unsqueeze(1), neg.unsqueeze(1)], axis=1) |
|
|
|
n_pos = pos.astype('float32').sum() |
|
|
|
if n_pos.item() > 0: |
|
loss_pos = F.cross_entropy( |
|
predict.masked_select(pos2).reshape([-1, 2]), |
|
target.masked_select(pos).astype('int64'), |
|
reduction='sum') |
|
loss_neg = F.cross_entropy( |
|
predict.masked_select(neg2).reshape([-1, 2]), |
|
target.masked_select(neg).astype('int64'), |
|
reduction='none') |
|
n_neg = min( |
|
int(neg.astype('float32').sum().item()), |
|
int(self.ohem_ratio * n_pos.astype('float32'))) |
|
else: |
|
loss_pos = paddle.to_tensor(0.) |
|
loss_neg = F.cross_entropy( |
|
predict.masked_select(neg2).reshape([-1, 2]), |
|
target.masked_select(neg).astype('int64'), |
|
reduction='none') |
|
n_neg = 100 |
|
if len(loss_neg) > n_neg: |
|
loss_neg, _ = paddle.topk(loss_neg, n_neg) |
|
|
|
return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).astype('float32') |
|
|
|
def fourier2poly(self, real_maps, imag_maps): |
|
"""Transform Fourier coefficient maps to polygon maps. |
|
|
|
Args: |
|
real_maps (tensor): A map composed of the real parts of the |
|
Fourier coefficients, whose shape is (-1, 2k+1) |
|
imag_maps (tensor):A map composed of the imag parts of the |
|
Fourier coefficients, whose shape is (-1, 2k+1) |
|
|
|
Returns |
|
x_maps (tensor): A map composed of the x value of the polygon |
|
represented by n sample points (xn, yn), whose shape is (-1, n) |
|
y_maps (tensor): A map composed of the y value of the polygon |
|
represented by n sample points (xn, yn), whose shape is (-1, n) |
|
""" |
|
|
|
k_vect = paddle.arange( |
|
-self.fourier_degree, self.fourier_degree + 1, |
|
dtype='float32').reshape([-1, 1]) |
|
i_vect = paddle.arange( |
|
0, self.num_sample, dtype='float32').reshape([1, -1]) |
|
|
|
transform_matrix = 2 * np.pi / self.num_sample * paddle.matmul(k_vect, |
|
i_vect) |
|
|
|
x1 = paddle.einsum('ak, kn-> an', real_maps, |
|
paddle.cos(transform_matrix)) |
|
x2 = paddle.einsum('ak, kn-> an', imag_maps, |
|
paddle.sin(transform_matrix)) |
|
y1 = paddle.einsum('ak, kn-> an', real_maps, |
|
paddle.sin(transform_matrix)) |
|
y2 = paddle.einsum('ak, kn-> an', imag_maps, |
|
paddle.cos(transform_matrix)) |
|
|
|
x_maps = x1 - x2 |
|
y_maps = y1 + y2 |
|
|
|
return x_maps, y_maps |
|
|