Danieldu
add code
a89d9fd
raw
history blame
10 kB
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle import optimizer as optim
class Momentum(object):
"""
Simple Momentum optimizer with velocity state.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self,
learning_rate,
momentum,
weight_decay=None,
grad_clip=None,
**args):
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=train_params)
return opt
class Adam(object):
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
parameter_list=None,
weight_decay=None,
grad_clip=None,
name=None,
lazy_mode=False,
**kwargs):
self.learning_rate = learning_rate
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.parameter_list = parameter_list
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.grad_clip = grad_clip
self.name = name
self.lazy_mode = lazy_mode
self.group_lr = kwargs.get('group_lr', False)
self.training_step = kwargs.get('training_step', None)
def __call__(self, model):
if self.group_lr:
if self.training_step == 'LF_2':
import paddle
if isinstance(model, paddle.fluid.dygraph.parallel.
DataParallel): # multi gpu
mlm = model._layers.head.MLM_VRM.MLM.parameters()
pre_mlm_pp = model._layers.head.MLM_VRM.Prediction.pp_share.parameters(
)
pre_mlm_w = model._layers.head.MLM_VRM.Prediction.w_share.parameters(
)
else: # single gpu
mlm = model.head.MLM_VRM.MLM.parameters()
pre_mlm_pp = model.head.MLM_VRM.Prediction.pp_share.parameters(
)
pre_mlm_w = model.head.MLM_VRM.Prediction.w_share.parameters(
)
total = []
for param in mlm:
total.append(id(param))
for param in pre_mlm_pp:
total.append(id(param))
for param in pre_mlm_w:
total.append(id(param))
group_base_params = [
param for param in model.parameters() if id(param) in total
]
group_small_params = [
param for param in model.parameters()
if id(param) not in total
]
train_params = [{
'params': group_base_params
}, {
'params': group_small_params,
'learning_rate': self.learning_rate.values[0] * 0.1
}]
else:
print(
'group lr currently only support VisionLAN in LF_2 training step'
)
train_params = [
param for param in model.parameters()
if param.trainable is True
]
else:
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Adam(
learning_rate=self.learning_rate,
beta1=self.beta1,
beta2=self.beta2,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
name=self.name,
lazy_mode=self.lazy_mode,
parameters=train_params)
return opt
class RMSProp(object):
"""
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
rho (float) - rho value in equation.
epsilon (float) - avoid division by zero, default is 1e-6.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self,
learning_rate,
momentum=0.0,
rho=0.95,
epsilon=1e-6,
weight_decay=None,
grad_clip=None,
**args):
super(RMSProp, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.rho = rho
self.epsilon = epsilon
self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.RMSProp(
learning_rate=self.learning_rate,
momentum=self.momentum,
rho=self.rho,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=train_params)
return opt
class Adadelta(object):
def __init__(self,
learning_rate=0.001,
epsilon=1e-08,
rho=0.95,
parameter_list=None,
weight_decay=None,
grad_clip=None,
name=None,
**kwargs):
self.learning_rate = learning_rate
self.epsilon = epsilon
self.rho = rho
self.parameter_list = parameter_list
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.grad_clip = grad_clip
self.name = name
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Adadelta(
learning_rate=self.learning_rate,
epsilon=self.epsilon,
rho=self.rho,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
name=self.name,
parameters=train_params)
return opt
class AdamW(object):
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
weight_decay=0.01,
multi_precision=False,
grad_clip=None,
no_weight_decay_name=None,
one_dim_param_no_weight_decay=False,
name=None,
lazy_mode=False,
**args):
super().__init__()
self.learning_rate = learning_rate
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.grad_clip = grad_clip
self.weight_decay = 0.01 if weight_decay is None else weight_decay
self.grad_clip = grad_clip
self.name = name
self.lazy_mode = lazy_mode
self.multi_precision = multi_precision
self.no_weight_decay_name_list = no_weight_decay_name.split(
) if no_weight_decay_name else []
self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay
def __call__(self, model):
parameters = [
param for param in model.parameters() if param.trainable is True
]
self.no_weight_decay_param_name_list = [
p.name for n, p in model.named_parameters()
if any(nd in n for nd in self.no_weight_decay_name_list)
]
if self.one_dim_param_no_weight_decay:
self.no_weight_decay_param_name_list += [
p.name for n, p in model.named_parameters() if len(p.shape) == 1
]
opt = optim.AdamW(
learning_rate=self.learning_rate,
beta1=self.beta1,
beta2=self.beta2,
epsilon=self.epsilon,
parameters=parameters,
weight_decay=self.weight_decay,
multi_precision=self.multi_precision,
grad_clip=self.grad_clip,
name=self.name,
lazy_mode=self.lazy_mode,
apply_decay_param_fun=self._apply_decay_param_fun)
return opt
def _apply_decay_param_fun(self, name):
return name not in self.no_weight_decay_param_name_list