|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import numpy as np |
|
import time |
|
import sys |
|
|
|
import tools.infer.utility as utility |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppocr.data import create_operators, transform |
|
from ppocr.postprocess import build_post_process |
|
|
|
logger = get_logger() |
|
|
|
|
|
class TextE2E(object): |
|
def __init__(self, args): |
|
self.args = args |
|
self.e2e_algorithm = args.e2e_algorithm |
|
self.use_onnx = args.use_onnx |
|
pre_process_list = [{ |
|
'E2EResizeForTest': {} |
|
}, { |
|
'NormalizeImage': { |
|
'std': [0.229, 0.224, 0.225], |
|
'mean': [0.485, 0.456, 0.406], |
|
'scale': '1./255.', |
|
'order': 'hwc' |
|
} |
|
}, { |
|
'ToCHWImage': None |
|
}, { |
|
'KeepKeys': { |
|
'keep_keys': ['image', 'shape'] |
|
} |
|
}] |
|
postprocess_params = {} |
|
if self.e2e_algorithm == "PGNet": |
|
pre_process_list[0] = { |
|
'E2EResizeForTest': { |
|
'max_side_len': args.e2e_limit_side_len, |
|
'valid_set': 'totaltext' |
|
} |
|
} |
|
postprocess_params['name'] = 'PGPostProcess' |
|
postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh |
|
postprocess_params["character_dict_path"] = args.e2e_char_dict_path |
|
postprocess_params["valid_set"] = args.e2e_pgnet_valid_set |
|
postprocess_params["mode"] = args.e2e_pgnet_mode |
|
else: |
|
logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm)) |
|
sys.exit(0) |
|
|
|
self.preprocess_op = create_operators(pre_process_list) |
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor( |
|
args, 'e2e', logger) |
|
|
|
|
|
def clip_det_res(self, points, img_height, img_width): |
|
for pno in range(points.shape[0]): |
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) |
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) |
|
return points |
|
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): |
|
img_height, img_width = image_shape[0:2] |
|
dt_boxes_new = [] |
|
for box in dt_boxes: |
|
box = self.clip_det_res(box, img_height, img_width) |
|
dt_boxes_new.append(box) |
|
dt_boxes = np.array(dt_boxes_new) |
|
return dt_boxes |
|
|
|
def __call__(self, img): |
|
|
|
ori_im = img.copy() |
|
data = {'image': img} |
|
data = transform(data, self.preprocess_op) |
|
img, shape_list = data |
|
if img is None: |
|
return None, 0 |
|
img = np.expand_dims(img, axis=0) |
|
shape_list = np.expand_dims(shape_list, axis=0) |
|
img = img.copy() |
|
starttime = time.time() |
|
|
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = img |
|
outputs = self.predictor.run(self.output_tensors, input_dict) |
|
preds = {} |
|
preds['f_border'] = outputs[0] |
|
preds['f_char'] = outputs[1] |
|
preds['f_direction'] = outputs[2] |
|
preds['f_score'] = outputs[3] |
|
else: |
|
self.input_tensor.copy_from_cpu(img) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
|
|
preds = {} |
|
if self.e2e_algorithm == 'PGNet': |
|
preds['f_border'] = outputs[0] |
|
preds['f_char'] = outputs[1] |
|
preds['f_direction'] = outputs[2] |
|
preds['f_score'] = outputs[3] |
|
else: |
|
raise NotImplementedError |
|
post_result = self.postprocess_op(preds, shape_list) |
|
points, strs = post_result['points'], post_result['texts'] |
|
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape) |
|
elapse = time.time() - starttime |
|
return dt_boxes, strs, elapse |
|
|
|
|
|
if __name__ == "__main__": |
|
args = utility.parse_args() |
|
image_file_list = get_image_file_list(args.image_dir) |
|
text_detector = TextE2E(args) |
|
count = 0 |
|
total_time = 0 |
|
draw_img_save = "./inference_results" |
|
if not os.path.exists(draw_img_save): |
|
os.makedirs(draw_img_save) |
|
for image_file in image_file_list: |
|
img, flag, _ = check_and_read(image_file) |
|
if not flag: |
|
img = cv2.imread(image_file) |
|
if img is None: |
|
logger.info("error in loading image:{}".format(image_file)) |
|
continue |
|
points, strs, elapse = text_detector(img) |
|
if count > 0: |
|
total_time += elapse |
|
count += 1 |
|
logger.info("Predict time of {}: {}".format(image_file, elapse)) |
|
src_im = utility.draw_e2e_res(points, strs, image_file) |
|
img_name_pure = os.path.split(image_file)[-1] |
|
img_path = os.path.join(draw_img_save, |
|
"e2e_res_{}".format(img_name_pure)) |
|
cv2.imwrite(img_path, src_im) |
|
logger.info("The visualized image saved in {}".format(img_path)) |
|
if count > 1: |
|
logger.info("Avg Time: {}".format(total_time / (count - 1))) |
|
|