Danieldu
add code
a89d9fd
raw
history blame
6.29 kB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time
import sys
import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
logger = get_logger()
class TextE2E(object):
def __init__(self, args):
self.args = args
self.e2e_algorithm = args.e2e_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{
'E2EResizeForTest': {}
}, {
'NormalizeImage': {
'std': [0.229, 0.224, 0.225],
'mean': [0.485, 0.456, 0.406],
'scale': '1./255.',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': ['image', 'shape']
}
}]
postprocess_params = {}
if self.e2e_algorithm == "PGNet":
pre_process_list[0] = {
'E2EResizeForTest': {
'max_side_len': args.e2e_limit_side_len,
'valid_set': 'totaltext'
}
}
postprocess_params['name'] = 'PGPostProcess'
postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh
postprocess_params["character_dict_path"] = args.e2e_char_dict_path
postprocess_params["valid_set"] = args.e2e_pgnet_valid_set
postprocess_params["mode"] = args.e2e_pgnet_mode
else:
logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm))
sys.exit(0)
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor(
args, 'e2e', logger) # paddle.jit.load(args.det_model_dir)
# self.predictor.eval()
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
data = transform(data, self.preprocess_op)
img, shape_list = data
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
starttime = time.time()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
preds = {}
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
raise NotImplementedError
post_result = self.postprocess_op(preds, shape_list)
points, strs = post_result['points'], post_result['texts']
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
elapse = time.time() - starttime
return dt_boxes, strs, elapse
if __name__ == "__main__":
args = utility.parse_args()
image_file_list = get_image_file_list(args.image_dir)
text_detector = TextE2E(args)
count = 0
total_time = 0
draw_img_save = "./inference_results"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
for image_file in image_file_list:
img, flag, _ = check_and_read(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
points, strs, elapse = text_detector(img)
if count > 0:
total_time += elapse
count += 1
logger.info("Predict time of {}: {}".format(image_file, elapse))
src_im = utility.draw_e2e_res(points, strs, image_file)
img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save,
"e2e_res_{}".format(img_name_pure))
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
if count > 1:
logger.info("Avg Time: {}".format(total_time / (count - 1)))