|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
from PIL import Image |
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.insert(0, __dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import numpy as np |
|
import math |
|
import time |
|
import traceback |
|
import paddle |
|
|
|
import tools.infer.utility as utility |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
|
|
logger = get_logger() |
|
|
|
|
|
class TextSR(object): |
|
def __init__(self, args): |
|
self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")] |
|
self.sr_batch_num = args.sr_batch_num |
|
|
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \ |
|
utility.create_predictor(args, 'sr', logger) |
|
self.benchmark = args.benchmark |
|
if args.benchmark: |
|
import auto_log |
|
pid = os.getpid() |
|
gpu_id = utility.get_infer_gpuid() |
|
self.autolog = auto_log.AutoLogger( |
|
model_name="sr", |
|
model_precision=args.precision, |
|
batch_size=args.sr_batch_num, |
|
data_shape="dynamic", |
|
save_path=None, |
|
inference_config=self.config, |
|
pids=pid, |
|
process_name=None, |
|
gpu_ids=gpu_id if args.use_gpu else None, |
|
time_keys=[ |
|
'preprocess_time', 'inference_time', 'postprocess_time' |
|
], |
|
warmup=0, |
|
logger=logger) |
|
|
|
def resize_norm_img(self, img): |
|
imgC, imgH, imgW = self.sr_image_shape |
|
img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC) |
|
img_numpy = np.array(img).astype("float32") |
|
img_numpy = img_numpy.transpose((2, 0, 1)) / 255 |
|
return img_numpy |
|
|
|
def __call__(self, img_list): |
|
img_num = len(img_list) |
|
batch_num = self.sr_batch_num |
|
st = time.time() |
|
st = time.time() |
|
all_result = [] * img_num |
|
if self.benchmark: |
|
self.autolog.times.start() |
|
for beg_img_no in range(0, img_num, batch_num): |
|
end_img_no = min(img_num, beg_img_no + batch_num) |
|
norm_img_batch = [] |
|
imgC, imgH, imgW = self.sr_image_shape |
|
for ino in range(beg_img_no, end_img_no): |
|
norm_img = self.resize_norm_img(img_list[ino]) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
|
|
norm_img_batch = np.concatenate(norm_img_batch) |
|
norm_img_batch = norm_img_batch.copy() |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
self.input_tensor.copy_from_cpu(norm_img_batch) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if len(outputs) != 1: |
|
preds = outputs |
|
else: |
|
preds = outputs[0] |
|
all_result.append(outputs) |
|
if self.benchmark: |
|
self.autolog.times.end(stamp=True) |
|
return all_result, time.time() - st |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
text_recognizer = TextSR(args) |
|
valid_image_file_list = [] |
|
img_list = [] |
|
|
|
|
|
if args.warmup: |
|
img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8) |
|
for i in range(2): |
|
res = text_recognizer([img] * int(args.sr_batch_num)) |
|
|
|
for image_file in image_file_list: |
|
img, flag, _ = check_and_read(image_file) |
|
if not flag: |
|
img = Image.open(image_file).convert("RGB") |
|
if img is None: |
|
logger.info("error in loading image:{}".format(image_file)) |
|
continue |
|
valid_image_file_list.append(image_file) |
|
img_list.append(img) |
|
try: |
|
preds, _ = text_recognizer(img_list) |
|
for beg_no in range(len(preds)): |
|
sr_img = preds[beg_no][1] |
|
lr_img = preds[beg_no][0] |
|
for i in (range(sr_img.shape[0])): |
|
fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8) |
|
fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8) |
|
img_name_pure = os.path.split(valid_image_file_list[ |
|
beg_no * args.sr_batch_num + i])[-1] |
|
cv2.imwrite("infer_result/sr_{}".format(img_name_pure), |
|
fm_sr[:, :, ::-1]) |
|
logger.info("The visualized image saved in infer_result/sr_{}". |
|
format(img_name_pure)) |
|
|
|
except Exception as E: |
|
logger.info(traceback.format_exc()) |
|
logger.info(E) |
|
exit() |
|
if args.benchmark: |
|
text_recognizer.autolog.report() |
|
|
|
|
|
if __name__ == "__main__": |
|
main(utility.parse_args()) |
|
|