|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import subprocess |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import copy |
|
import numpy as np |
|
import json |
|
import time |
|
import logging |
|
from PIL import Image |
|
import tools.infer.utility as utility |
|
import tools.infer.predict_rec as predict_rec |
|
import tools.infer.predict_det as predict_det |
|
import tools.infer.predict_cls as predict_cls |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppocr.utils.logging import get_logger |
|
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop |
|
logger = get_logger() |
|
|
|
|
|
class TextSystem(object): |
|
def __init__(self, args): |
|
if not args.show_log: |
|
logger.setLevel(logging.INFO) |
|
|
|
self.text_detector = predict_det.TextDetector(args) |
|
self.text_recognizer = predict_rec.TextRecognizer(args) |
|
self.use_angle_cls = args.use_angle_cls |
|
self.drop_score = args.drop_score |
|
if self.use_angle_cls: |
|
self.text_classifier = predict_cls.TextClassifier(args) |
|
|
|
self.args = args |
|
self.crop_image_res_index = 0 |
|
|
|
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res): |
|
os.makedirs(output_dir, exist_ok=True) |
|
bbox_num = len(img_crop_list) |
|
for bno in range(bbox_num): |
|
cv2.imwrite( |
|
os.path.join(output_dir, |
|
f"mg_crop_{bno+self.crop_image_res_index}.jpg"), |
|
img_crop_list[bno]) |
|
logger.debug(f"{bno}, {rec_res[bno]}") |
|
self.crop_image_res_index += bbox_num |
|
|
|
def __call__(self, img, cls=True): |
|
time_dict = {'det': 0, 'rec': 0, 'csl': 0, 'all': 0} |
|
start = time.time() |
|
ori_im = img.copy() |
|
dt_boxes, elapse = self.text_detector(img) |
|
time_dict['det'] = elapse |
|
logger.debug("dt_boxes num : {}, elapse : {}".format( |
|
len(dt_boxes), elapse)) |
|
if dt_boxes is None: |
|
return None, None |
|
img_crop_list = [] |
|
|
|
dt_boxes = sorted_boxes(dt_boxes) |
|
|
|
for bno in range(len(dt_boxes)): |
|
tmp_box = copy.deepcopy(dt_boxes[bno]) |
|
if self.args.det_box_type == "quad": |
|
img_crop = get_rotate_crop_image(ori_im, tmp_box) |
|
else: |
|
img_crop = get_minarea_rect_crop(ori_im, tmp_box) |
|
img_crop_list.append(img_crop) |
|
if self.use_angle_cls and cls: |
|
img_crop_list, angle_list, elapse = self.text_classifier( |
|
img_crop_list) |
|
time_dict['cls'] = elapse |
|
logger.debug("cls num : {}, elapse : {}".format( |
|
len(img_crop_list), elapse)) |
|
|
|
rec_res, elapse = self.text_recognizer(img_crop_list) |
|
time_dict['rec'] = elapse |
|
logger.debug("rec_res num : {}, elapse : {}".format( |
|
len(rec_res), elapse)) |
|
if self.args.save_crop_res: |
|
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list, |
|
rec_res) |
|
filter_boxes, filter_rec_res = [], [] |
|
for box, rec_result in zip(dt_boxes, rec_res): |
|
text, score = rec_result |
|
if score >= self.drop_score: |
|
filter_boxes.append(box) |
|
filter_rec_res.append(rec_result) |
|
end = time.time() |
|
time_dict['all'] = end - start |
|
return filter_boxes, filter_rec_res, time_dict |
|
|
|
|
|
def sorted_boxes(dt_boxes): |
|
""" |
|
Sort text boxes in order from top to bottom, left to right |
|
args: |
|
dt_boxes(array):detected text boxes with shape [4, 2] |
|
return: |
|
sorted boxes(array) with shape [4, 2] |
|
""" |
|
num_boxes = dt_boxes.shape[0] |
|
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) |
|
_boxes = list(sorted_boxes) |
|
|
|
for i in range(num_boxes - 1): |
|
for j in range(i, -1, -1): |
|
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ |
|
(_boxes[j + 1][0][0] < _boxes[j][0][0]): |
|
tmp = _boxes[j] |
|
_boxes[j] = _boxes[j + 1] |
|
_boxes[j + 1] = tmp |
|
else: |
|
break |
|
return _boxes |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
image_file_list = image_file_list[args.process_id::args.total_process_num] |
|
text_sys = TextSystem(args) |
|
is_visualize = True |
|
font_path = args.vis_font_path |
|
drop_score = args.drop_score |
|
draw_img_save_dir = args.draw_img_save_dir |
|
os.makedirs(draw_img_save_dir, exist_ok=True) |
|
save_results = [] |
|
|
|
logger.info( |
|
"In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', " |
|
"if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320" |
|
) |
|
|
|
|
|
if args.warmup: |
|
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) |
|
for i in range(10): |
|
res = text_sys(img) |
|
|
|
total_time = 0 |
|
cpu_mem, gpu_mem, gpu_util = 0, 0, 0 |
|
_st = time.time() |
|
count = 0 |
|
for idx, image_file in enumerate(image_file_list): |
|
|
|
img, flag_gif, flag_pdf = check_and_read(image_file) |
|
if not flag_gif and not flag_pdf: |
|
img = cv2.imread(image_file) |
|
if not flag_pdf: |
|
if img is None: |
|
logger.debug("error in loading image:{}".format(image_file)) |
|
continue |
|
imgs = [img] |
|
else: |
|
page_num = args.page_num |
|
if page_num > len(img) or page_num == 0: |
|
page_num = len(img) |
|
imgs = img[:page_num] |
|
for index, img in enumerate(imgs): |
|
starttime = time.time() |
|
dt_boxes, rec_res, time_dict = text_sys(img) |
|
elapse = time.time() - starttime |
|
total_time += elapse |
|
if len(imgs) > 1: |
|
logger.debug( |
|
str(idx) + '_' + str(index) + " Predict time of %s: %.3fs" |
|
% (image_file, elapse)) |
|
else: |
|
logger.debug( |
|
str(idx) + " Predict time of %s: %.3fs" % (image_file, |
|
elapse)) |
|
for text, score in rec_res: |
|
logger.debug("{}, {:.3f}".format(text, score)) |
|
|
|
res = [{ |
|
"transcription": rec_res[i][0], |
|
"points": np.array(dt_boxes[i]).astype(np.int32).tolist(), |
|
} for i in range(len(dt_boxes))] |
|
if len(imgs) > 1: |
|
save_pred = os.path.basename(image_file) + '_' + str( |
|
index) + "\t" + json.dumps( |
|
res, ensure_ascii=False) + "\n" |
|
else: |
|
save_pred = os.path.basename(image_file) + "\t" + json.dumps( |
|
res, ensure_ascii=False) + "\n" |
|
save_results.append(save_pred) |
|
|
|
if is_visualize: |
|
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
boxes = dt_boxes |
|
txts = [rec_res[i][0] for i in range(len(rec_res))] |
|
scores = [rec_res[i][1] for i in range(len(rec_res))] |
|
|
|
draw_img = draw_ocr_box_txt( |
|
image, |
|
boxes, |
|
txts, |
|
scores, |
|
drop_score=drop_score, |
|
font_path=font_path) |
|
if flag_gif: |
|
save_file = image_file[:-3] + "png" |
|
elif flag_pdf: |
|
save_file = image_file.replace('.pdf', |
|
'_' + str(index) + '.png') |
|
else: |
|
save_file = image_file |
|
cv2.imwrite( |
|
os.path.join(draw_img_save_dir, |
|
os.path.basename(save_file)), |
|
draw_img[:, :, ::-1]) |
|
logger.debug("The visualized image saved in {}".format( |
|
os.path.join(draw_img_save_dir, os.path.basename( |
|
save_file)))) |
|
|
|
logger.info("The predict total time is {}".format(time.time() - _st)) |
|
if args.benchmark: |
|
text_sys.text_detector.autolog.report() |
|
text_sys.text_recognizer.autolog.report() |
|
|
|
with open( |
|
os.path.join(draw_img_save_dir, "system_results.txt"), |
|
'w', |
|
encoding='utf-8') as f: |
|
f.writelines(save_results) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = utility.parse_args() |
|
if args.use_mp: |
|
p_list = [] |
|
total_process_num = args.total_process_num |
|
for process_id in range(total_process_num): |
|
cmd = [sys.executable, "-u"] + sys.argv + [ |
|
"--process_id={}".format(process_id), |
|
"--use_mp={}".format(False) |
|
] |
|
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) |
|
p_list.append(p) |
|
for p in p_list: |
|
p.wait() |
|
else: |
|
main(args) |
|
|