|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
from paddle.nn import L1Loss |
|
from paddle.nn import MSELoss as L2Loss |
|
from paddle.nn import SmoothL1Loss |
|
|
|
|
|
class CELoss(nn.Layer): |
|
def __init__(self, epsilon=None): |
|
super().__init__() |
|
if epsilon is not None and (epsilon <= 0 or epsilon >= 1): |
|
epsilon = None |
|
self.epsilon = epsilon |
|
|
|
def _labelsmoothing(self, target, class_num): |
|
if target.shape[-1] != class_num: |
|
one_hot_target = F.one_hot(target, class_num) |
|
else: |
|
one_hot_target = target |
|
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon) |
|
soft_target = paddle.reshape(soft_target, shape=[-1, class_num]) |
|
return soft_target |
|
|
|
def forward(self, x, label): |
|
loss_dict = {} |
|
if self.epsilon is not None: |
|
class_num = x.shape[-1] |
|
label = self._labelsmoothing(label, class_num) |
|
x = -F.log_softmax(x, axis=-1) |
|
loss = paddle.sum(x * label, axis=-1) |
|
else: |
|
if label.shape[-1] == x.shape[-1]: |
|
label = F.softmax(label, axis=-1) |
|
soft_label = True |
|
else: |
|
soft_label = False |
|
loss = F.cross_entropy(x, label=label, soft_label=soft_label) |
|
return loss |
|
|
|
|
|
class KLJSLoss(object): |
|
def __init__(self, mode='kl'): |
|
assert mode in ['kl', 'js', 'KL', 'JS' |
|
], "mode can only be one of ['kl', 'KL', 'js', 'JS']" |
|
self.mode = mode |
|
|
|
def __call__(self, p1, p2, reduction="mean", eps=1e-5): |
|
|
|
if self.mode.lower() == 'kl': |
|
loss = paddle.multiply(p2, |
|
paddle.log((p2 + eps) / (p1 + eps) + eps)) |
|
loss += paddle.multiply(p1, |
|
paddle.log((p1 + eps) / (p2 + eps) + eps)) |
|
loss *= 0.5 |
|
elif self.mode.lower() == "js": |
|
loss = paddle.multiply( |
|
p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps)) |
|
loss += paddle.multiply( |
|
p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps)) |
|
loss *= 0.5 |
|
else: |
|
raise ValueError( |
|
"The mode.lower() if KLJSLoss should be one of ['kl', 'js']") |
|
|
|
if reduction == "mean": |
|
loss = paddle.mean(loss, axis=[1, 2]) |
|
elif reduction == "none" or reduction is None: |
|
return loss |
|
else: |
|
loss = paddle.sum(loss, axis=[1, 2]) |
|
|
|
return loss |
|
|
|
|
|
class DMLLoss(nn.Layer): |
|
""" |
|
DMLLoss |
|
""" |
|
|
|
def __init__(self, act=None, use_log=False): |
|
super().__init__() |
|
if act is not None: |
|
assert act in ["softmax", "sigmoid"] |
|
if act == "softmax": |
|
self.act = nn.Softmax(axis=-1) |
|
elif act == "sigmoid": |
|
self.act = nn.Sigmoid() |
|
else: |
|
self.act = None |
|
|
|
self.use_log = use_log |
|
self.jskl_loss = KLJSLoss(mode="kl") |
|
|
|
def _kldiv(self, x, target): |
|
eps = 1.0e-10 |
|
loss = target * (paddle.log(target + eps) - x) |
|
|
|
loss = paddle.sum(loss) / loss.shape[0] |
|
return loss |
|
|
|
def forward(self, out1, out2): |
|
if self.act is not None: |
|
out1 = self.act(out1) + 1e-10 |
|
out2 = self.act(out2) + 1e-10 |
|
if self.use_log: |
|
|
|
log_out1 = paddle.log(out1) |
|
log_out2 = paddle.log(out2) |
|
loss = ( |
|
self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0 |
|
else: |
|
|
|
loss = self.jskl_loss(out1, out2) |
|
return loss |
|
|
|
|
|
class DistanceLoss(nn.Layer): |
|
""" |
|
DistanceLoss: |
|
mode: loss mode |
|
""" |
|
|
|
def __init__(self, mode="l2", **kargs): |
|
super().__init__() |
|
assert mode in ["l1", "l2", "smooth_l1"] |
|
if mode == "l1": |
|
self.loss_func = nn.L1Loss(**kargs) |
|
elif mode == "l2": |
|
self.loss_func = nn.MSELoss(**kargs) |
|
elif mode == "smooth_l1": |
|
self.loss_func = nn.SmoothL1Loss(**kargs) |
|
|
|
def forward(self, x, y): |
|
return self.loss_func(x, y) |
|
|
|
|
|
class LossFromOutput(nn.Layer): |
|
def __init__(self, key='loss', reduction='none'): |
|
super().__init__() |
|
self.key = key |
|
self.reduction = reduction |
|
|
|
def forward(self, predicts, batch): |
|
loss = predicts |
|
if self.key is not None and isinstance(predicts, dict): |
|
loss = loss[self.key] |
|
if self.reduction == 'mean': |
|
loss = paddle.mean(loss) |
|
elif self.reduction == 'sum': |
|
loss = paddle.sum(loss) |
|
return {'loss': loss} |
|
|