|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
|
|
|
|
class CTCLoss(nn.Layer): |
|
def __init__(self, use_focal_loss=False, **kwargs): |
|
super(CTCLoss, self).__init__() |
|
self.loss_func = nn.CTCLoss(blank=0, reduction='none') |
|
self.use_focal_loss = use_focal_loss |
|
|
|
def forward(self, predicts, batch): |
|
if isinstance(predicts, (list, tuple)): |
|
predicts = predicts[-1] |
|
predicts = predicts.transpose((1, 0, 2)) |
|
N, B, _ = predicts.shape |
|
preds_lengths = paddle.to_tensor( |
|
[N] * B, dtype='int64', place=paddle.CPUPlace()) |
|
labels = batch[1].astype("int32") |
|
label_lengths = batch[2].astype('int64') |
|
loss = self.loss_func(predicts, labels, preds_lengths, label_lengths) |
|
if self.use_focal_loss: |
|
weight = paddle.exp(-loss) |
|
weight = paddle.subtract(paddle.to_tensor([1.0]), weight) |
|
weight = paddle.square(weight) |
|
loss = paddle.multiply(loss, weight) |
|
loss = loss.mean() |
|
return {'loss': loss} |
|
|