|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
|
|
|
|
class SARLoss(nn.Layer): |
|
def __init__(self, **kwargs): |
|
super(SARLoss, self).__init__() |
|
ignore_index = kwargs.get('ignore_index', 92) |
|
self.loss_func = paddle.nn.loss.CrossEntropyLoss( |
|
reduction="mean", ignore_index=ignore_index) |
|
|
|
def forward(self, predicts, batch): |
|
predict = predicts[:, : |
|
-1, :] |
|
label = batch[1].astype( |
|
"int64")[:, 1:] |
|
batch_size, num_steps, num_classes = predict.shape[0], predict.shape[ |
|
1], predict.shape[2] |
|
assert len(label.shape) == len(list(predict.shape)) - 1, \ |
|
"The target's shape and inputs's shape is [N, d] and [N, num_steps]" |
|
|
|
inputs = paddle.reshape(predict, [-1, num_classes]) |
|
targets = paddle.reshape(label, [-1]) |
|
loss = self.loss_func(inputs, targets) |
|
return {'loss': loss} |
|
|