|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/whai362/PSENet/blob/python3/models/loss/iou.py |
|
""" |
|
|
|
import paddle |
|
|
|
EPS = 1e-6 |
|
|
|
|
|
def iou_single(a, b, mask, n_class): |
|
valid = mask == 1 |
|
a = a.masked_select(valid) |
|
b = b.masked_select(valid) |
|
miou = [] |
|
for i in range(n_class): |
|
if a.shape == [0] and a.shape == b.shape: |
|
inter = paddle.to_tensor(0.0) |
|
union = paddle.to_tensor(0.0) |
|
else: |
|
inter = ((a == i).logical_and(b == i)).astype('float32') |
|
union = ((a == i).logical_or(b == i)).astype('float32') |
|
miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS)) |
|
miou = sum(miou) / len(miou) |
|
return miou |
|
|
|
|
|
def iou(a, b, mask, n_class=2, reduce=True): |
|
batch_size = a.shape[0] |
|
|
|
a = a.reshape([batch_size, -1]) |
|
b = b.reshape([batch_size, -1]) |
|
mask = mask.reshape([batch_size, -1]) |
|
|
|
iou = paddle.zeros((batch_size, ), dtype='float32') |
|
for i in range(batch_size): |
|
iou[i] = iou_single(a[i], b[i], mask[i], n_class) |
|
|
|
if reduce: |
|
iou = paddle.mean(iou) |
|
return iou |
|
|