|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import json |
|
import numpy as np |
|
import time |
|
|
|
import tools.infer.utility as utility |
|
from tools.infer_kie_token_ser_re import make_input |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.visual import draw_ser_results, draw_re_results |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppstructure.utility import parse_args |
|
from ppstructure.kie.predict_kie_token_ser import SerPredictor |
|
|
|
logger = get_logger() |
|
|
|
|
|
class SerRePredictor(object): |
|
def __init__(self, args): |
|
self.use_visual_backbone = args.use_visual_backbone |
|
self.ser_engine = SerPredictor(args) |
|
if args.re_model_dir is not None: |
|
postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'} |
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \ |
|
utility.create_predictor(args, 're', logger) |
|
else: |
|
self.predictor = None |
|
|
|
def __call__(self, img): |
|
starttime = time.time() |
|
ser_results, ser_inputs, ser_elapse = self.ser_engine(img) |
|
if self.predictor is None: |
|
return ser_results, ser_elapse |
|
|
|
re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results) |
|
if self.use_visual_backbone == False: |
|
re_input.pop(4) |
|
for idx in range(len(self.input_tensor)): |
|
self.input_tensor[idx].copy_from_cpu(re_input[idx]) |
|
|
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
preds = dict( |
|
loss=outputs[1], |
|
pred_relations=outputs[2], |
|
hidden_states=outputs[0], ) |
|
|
|
post_result = self.postprocess_op( |
|
preds, |
|
ser_results=ser_results, |
|
entity_idx_dict_batch=entity_idx_dict_batch) |
|
|
|
elapse = time.time() - starttime |
|
return post_result, elapse |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
ser_re_predictor = SerRePredictor(args) |
|
count = 0 |
|
total_time = 0 |
|
|
|
os.makedirs(args.output, exist_ok=True) |
|
with open( |
|
os.path.join(args.output, 'infer.txt'), mode='w', |
|
encoding='utf-8') as f_w: |
|
for image_file in image_file_list: |
|
img, flag, _ = check_and_read(image_file) |
|
if not flag: |
|
img = cv2.imread(image_file) |
|
img = img[:, :, ::-1] |
|
if img is None: |
|
logger.info("error in loading image:{}".format(image_file)) |
|
continue |
|
re_res, elapse = ser_re_predictor(img) |
|
re_res = re_res[0] |
|
|
|
res_str = '{}\t{}\n'.format( |
|
image_file, |
|
json.dumps( |
|
{ |
|
"ocr_info": re_res, |
|
}, ensure_ascii=False)) |
|
f_w.write(res_str) |
|
if ser_re_predictor.predictor is not None: |
|
img_res = draw_re_results( |
|
image_file, re_res, font_path=args.vis_font_path) |
|
img_save_path = os.path.join( |
|
args.output, |
|
os.path.splitext(os.path.basename(image_file))[0] + |
|
"_ser_re.jpg") |
|
else: |
|
img_res = draw_ser_results( |
|
image_file, re_res, font_path=args.vis_font_path) |
|
img_save_path = os.path.join( |
|
args.output, |
|
os.path.splitext(os.path.basename(image_file))[0] + |
|
"_ser.jpg") |
|
|
|
cv2.imwrite(img_save_path, img_res) |
|
logger.info("save vis result to {}".format(img_save_path)) |
|
if count > 0: |
|
total_time += elapse |
|
count += 1 |
|
logger.info("Predict time of {}: {}".format(image_file, elapse)) |
|
|
|
|
|
if __name__ == "__main__": |
|
main(parse_args()) |
|
|