|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
import cv2 |
|
import copy |
|
import logging |
|
import numpy as np |
|
import time |
|
import tools.infer.predict_rec as predict_rec |
|
import tools.infer.predict_det as predict_det |
|
import tools.infer.utility as utility |
|
from tools.infer.predict_system import sorted_boxes |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppocr.utils.logging import get_logger |
|
from ppstructure.table.matcher import TableMatch |
|
from ppstructure.table.table_master_match import TableMasterMatcher |
|
from ppstructure.utility import parse_args |
|
import ppstructure.table.predict_structure as predict_strture |
|
|
|
logger = get_logger() |
|
|
|
|
|
def expand(pix, det_box, shape): |
|
x0, y0, x1, y1 = det_box |
|
|
|
h, w, c = shape |
|
tmp_x0 = x0 - pix |
|
tmp_x1 = x1 + pix |
|
tmp_y0 = y0 - pix |
|
tmp_y1 = y1 + pix |
|
x0_ = tmp_x0 if tmp_x0 >= 0 else 0 |
|
x1_ = tmp_x1 if tmp_x1 <= w else w |
|
y0_ = tmp_y0 if tmp_y0 >= 0 else 0 |
|
y1_ = tmp_y1 if tmp_y1 <= h else h |
|
return x0_, y0_, x1_, y1_ |
|
|
|
|
|
class TableSystem(object): |
|
def __init__(self, args, text_detector=None, text_recognizer=None): |
|
self.args = args |
|
if not args.show_log: |
|
logger.setLevel(logging.INFO) |
|
benchmark_tmp = False |
|
if args.benchmark: |
|
benchmark_tmp = args.benchmark |
|
args.benchmark = False |
|
self.text_detector = predict_det.TextDetector(copy.deepcopy( |
|
args)) if text_detector is None else text_detector |
|
self.text_recognizer = predict_rec.TextRecognizer(copy.deepcopy( |
|
args)) if text_recognizer is None else text_recognizer |
|
if benchmark_tmp: |
|
args.benchmark = True |
|
self.table_structurer = predict_strture.TableStructurer(args) |
|
if args.table_algorithm in ['TableMaster']: |
|
self.match = TableMasterMatcher() |
|
else: |
|
self.match = TableMatch(filter_ocr_result=True) |
|
|
|
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( |
|
args, 'table', logger) |
|
|
|
def __call__(self, img, return_ocr_result_in_table=False): |
|
result = dict() |
|
time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0} |
|
start = time.time() |
|
structure_res, elapse = self._structure(copy.deepcopy(img)) |
|
result['cell_bbox'] = structure_res[1].tolist() |
|
time_dict['table'] = elapse |
|
|
|
dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr( |
|
copy.deepcopy(img)) |
|
time_dict['det'] = det_elapse |
|
time_dict['rec'] = rec_elapse |
|
|
|
if return_ocr_result_in_table: |
|
result['boxes'] = dt_boxes |
|
result['rec_res'] = rec_res |
|
|
|
tic = time.time() |
|
pred_html = self.match(structure_res, dt_boxes, rec_res) |
|
toc = time.time() |
|
time_dict['match'] = toc - tic |
|
result['html'] = pred_html |
|
end = time.time() |
|
time_dict['all'] = end - start |
|
return result, time_dict |
|
|
|
def _structure(self, img): |
|
structure_res, elapse = self.table_structurer(copy.deepcopy(img)) |
|
return structure_res, elapse |
|
|
|
def _ocr(self, img): |
|
h, w = img.shape[:2] |
|
dt_boxes, det_elapse = self.text_detector(copy.deepcopy(img)) |
|
dt_boxes = sorted_boxes(dt_boxes) |
|
|
|
r_boxes = [] |
|
for box in dt_boxes: |
|
x_min = max(0, box[:, 0].min() - 1) |
|
x_max = min(w, box[:, 0].max() + 1) |
|
y_min = max(0, box[:, 1].min() - 1) |
|
y_max = min(h, box[:, 1].max() + 1) |
|
box = [x_min, y_min, x_max, y_max] |
|
r_boxes.append(box) |
|
dt_boxes = np.array(r_boxes) |
|
logger.debug("dt_boxes num : {}, elapse : {}".format( |
|
len(dt_boxes), det_elapse)) |
|
if dt_boxes is None: |
|
return None, None |
|
|
|
img_crop_list = [] |
|
for i in range(len(dt_boxes)): |
|
det_box = dt_boxes[i] |
|
x0, y0, x1, y1 = expand(2, det_box, img.shape) |
|
text_rect = img[int(y0):int(y1), int(x0):int(x1), :] |
|
img_crop_list.append(text_rect) |
|
rec_res, rec_elapse = self.text_recognizer(img_crop_list) |
|
logger.debug("rec_res num : {}, elapse : {}".format( |
|
len(rec_res), rec_elapse)) |
|
return dt_boxes, rec_res, det_elapse, rec_elapse |
|
|
|
|
|
def to_excel(html_table, excel_path): |
|
from tablepyxl import tablepyxl |
|
tablepyxl.document_to_xl(html_table, excel_path) |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
image_file_list = image_file_list[args.process_id::args.total_process_num] |
|
os.makedirs(args.output, exist_ok=True) |
|
|
|
table_sys = TableSystem(args) |
|
img_num = len(image_file_list) |
|
|
|
f_html = open( |
|
os.path.join(args.output, 'show.html'), mode='w', encoding='utf-8') |
|
f_html.write('<html>\n<body>\n') |
|
f_html.write('<table border="1">\n') |
|
f_html.write( |
|
"<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />" |
|
) |
|
f_html.write("<tr>\n") |
|
f_html.write('<td>img name\n') |
|
f_html.write('<td>ori image</td>') |
|
f_html.write('<td>table html</td>') |
|
f_html.write('<td>cell box</td>') |
|
f_html.write("</tr>\n") |
|
|
|
for i, image_file in enumerate(image_file_list): |
|
logger.info("[{}/{}] {}".format(i, img_num, image_file)) |
|
img, flag, _ = check_and_read(image_file) |
|
excel_path = os.path.join( |
|
args.output, os.path.basename(image_file).split('.')[0] + '.xlsx') |
|
if not flag: |
|
img = cv2.imread(image_file) |
|
if img is None: |
|
logger.error("error in loading image:{}".format(image_file)) |
|
continue |
|
starttime = time.time() |
|
pred_res, _ = table_sys(img) |
|
pred_html = pred_res['html'] |
|
logger.info(pred_html) |
|
to_excel(pred_html, excel_path) |
|
logger.info('excel saved to {}'.format(excel_path)) |
|
elapse = time.time() - starttime |
|
logger.info("Predict time : {:.3f}s".format(elapse)) |
|
|
|
if len(pred_res['cell_bbox']) > 0 and len(pred_res['cell_bbox'][ |
|
0]) == 4: |
|
img = predict_strture.draw_rectangle(image_file, |
|
pred_res['cell_bbox']) |
|
else: |
|
img = utility.draw_boxes(img, pred_res['cell_bbox']) |
|
img_save_path = os.path.join(args.output, os.path.basename(image_file)) |
|
cv2.imwrite(img_save_path, img) |
|
|
|
f_html.write("<tr>\n") |
|
f_html.write(f'<td> {os.path.basename(image_file)} <br/>\n') |
|
f_html.write(f'<td><img src="{image_file}" width=640></td>\n') |
|
f_html.write('<td><table border="1">' + pred_html.replace( |
|
'<html><body><table>', '').replace('</table></body></html>', '') + |
|
'</table></td>\n') |
|
f_html.write( |
|
f'<td><img src="{os.path.basename(image_file)}" width=640></td>\n') |
|
f_html.write("</tr>\n") |
|
f_html.write("</table>\n") |
|
f_html.close() |
|
|
|
if args.benchmark: |
|
table_sys.table_structurer.autolog.report() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
if args.use_mp: |
|
import subprocess |
|
p_list = [] |
|
total_process_num = args.total_process_num |
|
for process_id in range(total_process_num): |
|
cmd = [sys.executable, "-u"] + sys.argv + [ |
|
"--process_id={}".format(process_id), |
|
"--use_mp={}".format(False) |
|
] |
|
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) |
|
p_list.append(p) |
|
for p in p_list: |
|
p.wait() |
|
else: |
|
main(args) |
|
|