|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import numpy as np |
|
import time |
|
import json |
|
|
|
import tools.infer.utility as utility |
|
from ppocr.data import create_operators, transform |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppocr.utils.visual import draw_rectangle |
|
from ppstructure.utility import parse_args |
|
|
|
logger = get_logger() |
|
|
|
|
|
def build_pre_process_list(args): |
|
resize_op = {'ResizeTableImage': {'max_len': args.table_max_len, }} |
|
pad_op = { |
|
'PaddingTableImage': { |
|
'size': [args.table_max_len, args.table_max_len] |
|
} |
|
} |
|
normalize_op = { |
|
'NormalizeImage': { |
|
'std': [0.229, 0.224, 0.225] if |
|
args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5], |
|
'mean': [0.485, 0.456, 0.406] if |
|
args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5], |
|
'scale': '1./255.', |
|
'order': 'hwc' |
|
} |
|
} |
|
to_chw_op = {'ToCHWImage': None} |
|
keep_keys_op = {'KeepKeys': {'keep_keys': ['image', 'shape']}} |
|
if args.table_algorithm not in ['TableMaster']: |
|
pre_process_list = [ |
|
resize_op, normalize_op, pad_op, to_chw_op, keep_keys_op |
|
] |
|
else: |
|
pre_process_list = [ |
|
resize_op, pad_op, normalize_op, to_chw_op, keep_keys_op |
|
] |
|
return pre_process_list |
|
|
|
|
|
class TableStructurer(object): |
|
def __init__(self, args): |
|
self.args = args |
|
self.use_onnx = args.use_onnx |
|
pre_process_list = build_pre_process_list(args) |
|
if args.table_algorithm not in ['TableMaster']: |
|
postprocess_params = { |
|
'name': 'TableLabelDecode', |
|
"character_dict_path": args.table_char_dict_path, |
|
'merge_no_span_structure': args.merge_no_span_structure |
|
} |
|
else: |
|
postprocess_params = { |
|
'name': 'TableMasterLabelDecode', |
|
"character_dict_path": args.table_char_dict_path, |
|
'box_shape': 'pad', |
|
'merge_no_span_structure': args.merge_no_span_structure |
|
} |
|
|
|
self.preprocess_op = create_operators(pre_process_list) |
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \ |
|
utility.create_predictor(args, 'table', logger) |
|
|
|
if args.benchmark: |
|
import auto_log |
|
pid = os.getpid() |
|
gpu_id = utility.get_infer_gpuid() |
|
self.autolog = auto_log.AutoLogger( |
|
model_name="table", |
|
model_precision=args.precision, |
|
batch_size=1, |
|
data_shape="dynamic", |
|
save_path=None, |
|
inference_config=self.config, |
|
pids=pid, |
|
process_name=None, |
|
gpu_ids=gpu_id if args.use_gpu else None, |
|
time_keys=[ |
|
'preprocess_time', 'inference_time', 'postprocess_time' |
|
], |
|
warmup=0, |
|
logger=logger) |
|
|
|
def __call__(self, img): |
|
starttime = time.time() |
|
if self.args.benchmark: |
|
self.autolog.times.start() |
|
|
|
ori_im = img.copy() |
|
data = {'image': img} |
|
data = transform(data, self.preprocess_op) |
|
img = data[0] |
|
if img is None: |
|
return None, 0 |
|
img = np.expand_dims(img, axis=0) |
|
img = img.copy() |
|
if self.args.benchmark: |
|
self.autolog.times.stamp() |
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = img |
|
outputs = self.predictor.run(self.output_tensors, input_dict) |
|
else: |
|
self.input_tensor.copy_from_cpu(img) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.args.benchmark: |
|
self.autolog.times.stamp() |
|
|
|
preds = {} |
|
preds['structure_probs'] = outputs[1] |
|
preds['loc_preds'] = outputs[0] |
|
|
|
shape_list = np.expand_dims(data[-1], axis=0) |
|
post_result = self.postprocess_op(preds, [shape_list]) |
|
|
|
structure_str_list = post_result['structure_batch_list'][0] |
|
bbox_list = post_result['bbox_batch_list'][0] |
|
structure_str_list = structure_str_list[0] |
|
structure_str_list = [ |
|
'<html>', '<body>', '<table>' |
|
] + structure_str_list + ['</table>', '</body>', '</html>'] |
|
elapse = time.time() - starttime |
|
if self.args.benchmark: |
|
self.autolog.times.end(stamp=True) |
|
return (structure_str_list, bbox_list), elapse |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
table_structurer = TableStructurer(args) |
|
count = 0 |
|
total_time = 0 |
|
os.makedirs(args.output, exist_ok=True) |
|
with open( |
|
os.path.join(args.output, 'infer.txt'), mode='w', |
|
encoding='utf-8') as f_w: |
|
for image_file in image_file_list: |
|
img, flag, _ = check_and_read(image_file) |
|
if not flag: |
|
img = cv2.imread(image_file) |
|
if img is None: |
|
logger.info("error in loading image:{}".format(image_file)) |
|
continue |
|
structure_res, elapse = table_structurer(img) |
|
structure_str_list, bbox_list = structure_res |
|
bbox_list_str = json.dumps(bbox_list.tolist()) |
|
logger.info("result: {}, {}".format(structure_str_list, |
|
bbox_list_str)) |
|
f_w.write("result: {}, {}\n".format(structure_str_list, |
|
bbox_list_str)) |
|
|
|
if len(bbox_list) > 0 and len(bbox_list[0]) == 4: |
|
img = draw_rectangle(image_file, bbox_list) |
|
else: |
|
img = utility.draw_boxes(img, bbox_list) |
|
img_save_path = os.path.join(args.output, |
|
os.path.basename(image_file)) |
|
cv2.imwrite(img_save_path, img) |
|
logger.info("save vis result to {}".format(img_save_path)) |
|
if count > 0: |
|
total_time += elapse |
|
count += 1 |
|
logger.info("Predict time of {}: {}".format(image_file, elapse)) |
|
if args.benchmark: |
|
table_structurer.autolog.report() |
|
|
|
|
|
if __name__ == "__main__": |
|
main(parse_args()) |
|
|